/* This software may only be used by you under license from AT&T Corp. ("AT&T"). A copy of AT&T's Source Code Agreement is available at AT&T's Internet website having the URL: If you received this software without first entering into a license with AT&T, you have an infringing copy of this software and cannot use it without violating AT&T's intellectual property rights. */ #pragma prototyped /* * build edge_t concentrators for parallel edges with a common endpoint */ #include "dot.h" #define UP 0 #define DOWN 1 static boolean samedir(edge_t *e,edge_t *f) { edge_t *e0,*f0; for (e0 = e; ED_edge_type(e0) != NORMAL; e0 = ED_to_orig(e0)); for (f0 = f; ED_edge_type(f0) != NORMAL; f0 = ED_to_orig(f0)); if (ED_conc_opp_flag(e0)) return FALSE; if (ED_conc_opp_flag(f0)) return FALSE; return ((ND_rank(f0->tail) - ND_rank(f0->head)) *(ND_rank(e0->tail) - ND_rank(e0->head)) > 0); } boolean downcandidate(node_t* v) { return ((ND_node_type(v) == VIRTUAL) && (ND_in(v).size == 1) && (ND_out(v).size == 1) &&(ND_label(v) == NULL)); } boolean bothdowncandidates(node_t *u, node_t *v) { edge_t *e,*f; e = ND_in(u).list[0]; f = ND_in(v).list[0]; if (downcandidate(v) && (e->tail == f->tail)) { return samedir(e,f) && (portcmp(ED_tail_port(e),ED_tail_port(f))==0); } return FALSE; } boolean upcandidate(node_t* v) { return ((ND_node_type(v) == VIRTUAL) && (ND_out(v).size == 1) && (ND_in(v).size == 1) && (ND_label(v) == NULL)); } boolean bothupcandidates(node_t *u, node_t *v) { edge_t *e,*f; e = ND_out(u).list[0]; f = ND_out(v).list[0]; if (upcandidate(v) && (e->head == f->head)) { return samedir(e,f) && (portcmp(ED_head_port(e),ED_head_port(f))==0); } return FALSE; } void mergevirtual(graph_t *g, int r, int lpos, int rpos, int dir) { int i,k; node_t *left,*right; edge_t *e,*f,*e0; left = GD_rank(g)[r].v[lpos]; /* merge all right nodes into the leftmost one */ for (i = lpos + 1; i <= rpos; i++) { right = GD_rank(g)[r].v[i]; if (dir == DOWN) { while ((e = ND_out(right).list[0])) { for (k = 0; (f = ND_out(left).list[k]); k++) if (f->head == e->head) break; if (f == NULL) f = virtual_edge(left,e->head,e); while ((e0 = ND_in(right).list[0])) { merge_oneway(e0,f); /*ED_weight(f) += ED_weight(e0);*/ delete_fast_edge(e0); } delete_fast_edge(e); } } else { while ((e = ND_in(right).list[0])) { for (k = 0; (f = ND_in(left).list[k]); k++) if (f->tail == e->tail) break; if (f == NULL) f = virtual_edge(e->tail,left,e); while ((e0 = ND_out(right).list[0])) { merge_oneway(e0,f); delete_fast_edge(e0); } delete_fast_edge(e); } } assert(ND_in(right).size + ND_out(right).size == 0); delete_fast_node(g,right); } k = lpos + 1; i = rpos + 1; while (i < GD_rank(g)[r].n) { node_t *n; n = GD_rank(g)[r].v[k] = GD_rank(g)[r].v[i]; ND_order(n) = k; k++; i++; } GD_rank(g)[r].n = k; GD_rank(g)[r].v[k] = NULL; } void dot_concentrate(graph_t* g) { int c,r,leftpos,rightpos; node_t *left,*right; if (GD_maxrank(g) - GD_minrank(g) <= 1) return; /* this is the downward looking pass. r is a candidate rank. */ for (r = 1; GD_rank(g)[r+1].n; r++) { for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) { left = GD_rank(g)[r].v[leftpos]; if (downcandidate(left) == FALSE) continue; for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n; rightpos++) { right = GD_rank(g)[r].v[rightpos]; if (bothdowncandidates(left,right) == FALSE) break; } if (rightpos - leftpos > 1) mergevirtual(g,r,leftpos,rightpos-1,DOWN); } } /* this is the corresponding upward pass */ while (r > 0) { for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) { left = GD_rank(g)[r].v[leftpos]; if (upcandidate(left) == FALSE) continue; for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n; rightpos++) { right = GD_rank(g)[r].v[rightpos]; if (bothupcandidates(left,right) == FALSE) break; } if (rightpos - leftpos > 1) mergevirtual(g,r,leftpos,rightpos-1,UP); } r--; } for (c = 1; c <= GD_n_cluster(g); c++) rebuild_vlists(GD_clust(g)[c]); } void infuse(graph_t* g, node_t* n) { node_t *lead; lead = GD_rankleader(g)[ND_rank(n)]; if ((lead == NULL) || (ND_order(lead) > ND_order(n))) GD_rankleader(g)[ND_rank(n)] = n; } void rebuild_vlists(graph_t* g) { int c,i,r,maxi; node_t *n,*lead; edge_t *e,*rep; for (r = GD_minrank(g); r <= GD_maxrank(g); r++) GD_rankleader(g)[r] = NULL; for (n = agfstnode(g); n; n = agnxtnode(g,n)) { infuse(g,n); for (e = agfstout(g,n); e; e = agnxtout(g,e)) { for (rep = e; ED_to_virt(rep); rep = ED_to_virt(rep)); while (ND_rank(rep->head) < ND_rank(e->head)) { infuse(g,rep->head); rep = ND_out(rep->head).list[0]; } } } for (r = GD_minrank(g); r <= GD_maxrank(g); r++) { lead = GD_rankleader(g)[r]; if(ND_rank(g->root)[r].v[ND_order(lead)] != lead) abort(); GD_rank(g)[r].v = ND_rank(g->root)[r].v + GD_rankleader(g)[r]->u.order; maxi = -1; for (i = 0; i < GD_rank(g)[r].n; i++) { if ((n = GD_rank(g)[r].v[i]) == NULL) break; if (ND_node_type(n) == NORMAL) { if (agcontains(g,n)) maxi = i; else break; } else { edge_t *e; for (e = ND_in(n).list[0]; e && ED_to_orig(e); e = ED_to_orig(e)); if (e && (agcontains(g,e->tail)) && agcontains(g,e->head)) maxi = i; } } if (maxi == -1) agerr(AGWARN, "degenerate concentrated rank %s,%d\n",g->name,r); GD_rank(g)[r].n = maxi + 1; } for (c = 1; c <= GD_n_cluster(g); c++) rebuild_vlists(GD_clust(g)[c]); }