
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 999

Graphics in Overlapping Bitmap Layers

Rob Pike

April 1, 1983

Graphics in Overlapping Bitmap Layers

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

One of the common uses of bitmap terminals is to store multiple program-
ming contexts in multiple, possibly overlapping, areas of the screen called win-
dows. Windows traditionally store the visible state of a programming environ-
ment, such as an editor or debugger, while the user works with some other pro-
gram. This model of interaction is attractive for one-process systems, but to
make full use of a multiprogramming environment, windows must be asyn-
chronously updated, even when partially or wholly obscured by other windows.
For example, a long compilation may run in one window, displaying messages
as appropriate, while the user edits a file in another window.

This document describes a set of low-level graphics primitives to manipu-
late overlapping asynchronous windows, called layers, on a bitmap display ter-
minal. Unlike previous window software such as [mey81] and [tes81], these
primitives extend the domain of the general bitmap operator bitblt [gui82] to
include bitmaps which are partially or wholly obscured.

April 1, 1983

Graphics in Overlapping Bitmap Layers

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.4 [Computer Graphics]: Graphics Utilities.

General Terms: Algorithms

Additional Key Words and Phrases: Raster image, bitmaps, bitblt instruction, windows.

Introduction

Bitmap displays are in vogue. Despite their drawbacks, they are sufficiently inexpensive to
be personal equipment rather than shared computer center resources. Unfortunately, although
their use has become widespread, most bitmap displays are controlled by primitive software.

Bitmap screens are commonly divided into a set of rectangular areas called windows each of
which maintains the input and output context for a particular program or graphics application.
A bitmap display can become several screens at once — different windows can be emulating
standard terminals, graphics terminals, drafting tables or even arcade games. The screen areas
need not be disjoint — the display areas of two programs may overlap, with one area fully visible
and the other partially or wholly obscured. This paper describes software to manipulate these
overlapping windows, or layers, on a single display. A program drawing in a layer is fully iso-
lated from other programs drawing on the same screen, even if one layer overlaps, and thereby
obscures part of, the other. By extending the basic bitmap operators to work with layers, which
may be regarded as possibly obscured, subdivided bitmaps, each program manipulates its layer
just as it would manipulate the full screen or any other bitmap in a more conventional environ-
ment. Each program is removed from considerations regarding, for example, which layers
obscure which, and two programs may (almost) simultaneously draw in their respective layers,
even though some of the drawn objects are currently obscured from view.

Comparison with previous work

A number of window systems have been implemented by others [lan79, tes81, mey81,
wei81], but the software presented here has some distinguishing characteristics, dictated largely
by the environment under which it is run. The environment is a bitmap display connected to a
multiprogrammed timesharing system, with a limited but useful amount of off-screen memory
(about a screenful) for storing bitmaps. Because the system is multiprogrammed, any program
may want to update its window at any time, regardless of whether it is attached to the keyboard
and mouse or even whether it is fully visible. It is also important that the user program be
removed from concerns about window update: changes in the window configuration should be
invisible to the program. This precludes the simple ‘‘repaint’’ mechanism, wherein a program is
instructed to redraw its window whenever its visibility changes, because repainting forces the
user program to deal with issues better left to lower-level software. Like the file system, which
makes a user file look like a contiguously addressable stream of bytes although it might be scat-
tered across the disk, the window system should provide a simple programming interface so a
program can always draw in its window as though it is a contiguous bitmap, regardless of its
position or visibilty on the screen.

- 2 -

There are two basic approaches to providing this transparency. The first, exemplified by
the BRUWIN system [mey81], is to maintain a display list that is re-evaluated when the window
configuration changes. Although this method typically uses a relatively small amount of mem-
ory to hold the display list, and makes it easy to rearrange the layout of the windows on the dis-
play, it has a few difficulties. One problem is that the time to redraw a freshly uncovered portion
of a window is substantial if the window’s display list is long. More important, it is only possible
to draw what the display list can encode. BRUWIN, for example, only supports characters, con-
tradicting the generality of the bitmap data structure. Even adding bitmap primitives to the dis-
play list is not entirely satisfactory, however. Consider using a bitmap paint program to create a
realistic scene: the bitmap containing the scene is probably smaller than the display list to
describe it, and certainly takes much less time to draw on the screen. Display lists introduce an
unnecessary level of indirection.

The second method, used on the Lisp Machine [wei81], is to keep the window image in a
contiguous off-screen bitmap and copy data from there to the visible portions of the on-screen
window. This simple method has the advantage of supporting any bitmap operation, but takes a
constant large amount of auxiliary memory and can be inefficient — it may be necessary to exe-
cute each bitmap operation twice: once off-screen and once on-screen.

The layers software is in some sense an optimization of this ‘‘shadow bitmap’’ method. By
dividing the windows into visible and obscured parts, and only keeping obscured parts off-
screen, it uses the minimum memory possible (assuming no display lists) by letting the screen
memory itself hold the visible parts. The basic idea is to extend the domain of the general bitmap
operator bitblt [gui82] to include windows that are wholly or partially obscured. Layer drawing
operations therefore touch the same number of pixels regardless of visibility, although the num-
ber of bitblt operations may be larger if there are on-screen and off-screen components. The data
structures and software are designed to make drawing in a layer as fast as possible, at the
expense of slower creation and deletion operators (although creation and deletion are still fast).
The most common layer shuffling operator, making a layer fully visible, is also efficient because it
touches only those pixels that need to be updated. There are disadvantages, of course: the data
structures become unwieldy with more than about a dozen overlapping layers, and translating a
layer across the screen is clumsy, but the software has been implemented and works comfortably
in our time-sharing environment, where the number of layers is fairly small and their average
lifetime long.

Definitions

The programs described herein, written in a pseudo-C dialect, use several simple defined
types and primitive bitmap operations. This section describes the basic concepts for bitmap oper-
ations, but does not attempt to be complete. The next section defines bitmaps precisely.

A Point is an ordered pair

typedef struct{
int x, y;

}Point;

that defines a location in a bitmap such as the screen. A Rectangle is defined by a pair of Points
spanning a diagonal:

typedef struct{
Point origin; /* min x,y */
Point corner; /* max x,y */

}Rectangle;

By definition, corner.x ≥ origin.x and corner.y ≥ origin.y. Rectangles are half-open: a
Rectangle contains the horizontal and vertical lines through origin, and abuts, but does not
contain, the lines through corner. Two abutting rectangles r 0 and r 1 , with
r 1.origin = (r 0.corner.x, r 0.origin.y), therefore have no point in common. The same

- 3 -

applies to lines in any direction: a line segment drawn from (x 0 ,y 0) to (x 1 ,y 1) does not contain
(x 1 ,y 1). These curious definitions simplify drawing objects in pieces, which is essential to the
layer primitives.

The routine rectf(b, r, f) performs a function specified by an integer code f, in a rect-
angle r, in a bitmap b. The function code is one of:

CLR: clear rectangle to zeros
OR: set rectangle to ones
XOR: invert bits in rectangle

The routine bitblt(sb, r, db, p, f) (bit-block transfer) copies a source Rectangle r in a bit-
map sb to a corresponding Rectangle with origin p in a destination bitmap db. bitblt() is
therefore a form of Rectangle assignment operator, and the function code f specifies the nature of
the assignment:

STORE: dest = source
OR: dest |= source
CLR: dest &= ˜source
XOR: dest ˆ= source

For example, OR specifies that the destination Rectangle is formed from the bit-wise OR of the
source and destination Rectangles before the bitblt(). Here, |, &, ˆ and ˜ are C’s bit-wise OR,
AND, exclusive-OR and NOT operators, and the notation x *= y is equivalent to x = x * y,
but is notationally and semantically closer to the machine.

Often, bitblt() is defined to copy through a two-dimensional mask, to permit stippling
and related operations. Our original bitblt() had implementation problems (which have since
been resolved) which forced us to not incorporate a mask into the primitive; for compatibility,
our current bitblt() also does not have a mask. However, whether a mask is present has no
bearing on the ideas presented here.

bitblt() is a fundamental bitmap operation. It is used to draw characters, save screen
rectangles and present menus. Defined with a bit mask, it includes rectf(). For a thorough
description, see [ing81] or [gui82]. bitblt() can be a very expensive operation, however. In
the general case, the data from the source Rectangle must be shifted or rotated and masked
before being written to the destination Rectangle, and the amount of data processed in a single
bitblt() can be surprisingly large.

Bitmaps

A bitmap is a dot-matrix representation of a rectangular image. The details of the represen-
tation depend on the display hardware, or, more specifically, on the arrangement of memory in
the display. For the idea of a bitmap to mesh well with the software in the display, the screen
must appear to the program as a bitmap with no special properties other than its visibility.
Because images (bitmaps) are stored off-screen, off-screen memory should have the same format
as the screen itself, so that copying images to and from the screen is not a special case in the soft-
ware. The simplest way to achieve this generality is to make the screen a contiguous array of
memory, with the last word in a scan line followed immediately by the first word of the next scan
line. Under this scheme, bitmaps become something familiar to the programmer: a two-
dimensional array.

Given a two-dimensional array in which to store the actual image, some auxiliary informa-
tion is required for its interpretation. Figure 1 illustrates how a bitmap is interpreted. The
hatched region is the location of the image. When a bitmap is allocated, the allocation routine,
balloc(), assumes its data will correspond to a screen rectangle, for example, a part of one
layer obscured by another. balloc() creates the left and right margins of the bitmap to word-
align the bitmap with the screen, so word boundaries in the bitmap are at the same relative posi-
tions as in the screen. This technique can make a significant performance difference for the com-
mon operation of saving and restoring screen rectangles.

- 4 -

word bdryword bdry

bitsPerWord*width

height

rect.origin

base

_ ___

_ ___

_ __

_ __

Figure 1. Layout of a bitmap. The storage begins and ends on word boundaries, with the last word of one
scan line followed immediately by the first word of the next scan line. The hatched area, Bitmap.rect, stores
the image.

balloc() takes one argument, the on-screen rectangle which corresponds to the bitmap
image, and returns a pointer to a data structure of type Bitmap. Bitmap is defined thus:

typedef struct{
Word *base; /* start of data */
unsigned width; /* width in words */
Rectangle rect; /* image rectangle */

}Bitmap;

The declaration Word *base states that base points to an object of type Word, or rather that
*base is a Word pointed to by base. (Pointers in C can point to objects not allocated dynami-
cally, and the layers software depends on this.) The elements of the structure are illustrated in
Figure 1. width is in Words, which are some convenient unit of storage. rect is the argument
to balloc(), and defines the coordinate system inside the Bitmap (the next section, about the
Layer data structure, explains why this is done). The storage in the Bitmap outside rect — the
unhatched portion in Figure 1 — is unused, as described above.

Typically, width is the number of Words across the Bitmap, between the arrows in Figure
1. A Bitmap may be contained in another Bitmap, however, if width is the width of the outer
Bitmap, and base points as usual to the first Word in the Bitmap — the Word containing the
pixel at the origin of the Bitmap. Although such Bitmaps are not created by balloc(), they
have utility — such as representing the portion of the screen occupied by a layer.

balloc() and its obvious counterpart bfree() hide all issues of storage management for
bitmaps. Because the sizes of bitmaps are widely variable, balloc() does garbage compaction,
moving all allocated bitmaps to one end of the arena when space runs low, thereby ensuring that
memory does not fragment.

The Bitmap structure is used throughout the layer software. Graphics primitives operate
on points, lines and rectangles within Bitmaps, not necessarily the screen. The screen itself is sim-
ply a globally accessible Bitmap structure, called display, and is unknown within the graphics
primitives.

- 5 -

Layers

A layer is a rectangular portion of the screen and its associated image. It may be thought of
as a virtual display screen. Layers may overlap (although they need not), but the image in the
obscured portion of a layer is always kept current. Typically, an asynchronous process, such as a
terminal program or circuit design system, draws pictures and text in a layer, just as it might
draw in any bitmap (such as the full screen if it were the only process on the display). Because
processes are asynchronous, drawing actions can take place at any time in an obscured layer, and
a graphical object such as a line may be partially visible on the screen and partially in the
obscured portion of the layer. The layer software isolates a program drawing in a layer on the
screen from other such programs in other layers, and guarantees that the image on- and off-
screen is always correct, regardless of the configuration of the layers on the screen.

Layers are different from the common notion of windows†. Windows are used to save a
programming or working environment, such as a text editing session, to process ‘‘interrupts’’
such as looking at a file or sending mail, or to keep several static contexts, such as file contents, on
the screen. Layers are intended to maintain an environment, even though it may change because
the associated programs are still running. For example, a programmer could be editing the pro-
gram source in one layer while watching for diagnostic messages from a long compilation taking
place in another layer, and waiting for intruders into his corner of the labyrinth in a real-time
game in a third layer. There is, of course, nothing deep in the distinction between layers and
windows; the term ‘‘layer’’ was coined to avoid the more cumbersome phrase ‘‘asynchronous
windows.’’ Nonetheless, the difference between layers and windows is significant. The concept
of multiple active contexts is natural to use and powerful to exploit.

Truly asynchronous graphics operations are difficult to support, because the state of a layer
may change while a graphics operation is underway. The obvious simple solution is to perform
graphical operations atomically by inhibiting process switches during calls to the layer software.

Layer B

Layer A

_ ___

_ ___

_ ______________

_ ______________

_ _______

_ __________

Figure 2. Obscured portions of a layer are stored off-screen and linked to the obscured layer.

The data structures for layers are illustrated in Figures 2 and 3. A partially obscured layer
has an obscured list: a list of disjoint rectangles in that layer obscured by another layer or layers. In
Figure 2, layer A obscures layer B. Layer B’s obscured list has a single entry, which is marked
‘‘obscured by A.’’ If more than one layer obscures a rectangle, the rectangle is marked as

†The term ‘‘window’’ in common usage is a misnomer (see e.g. [new79]). The meaning is actually closer to that
of the older term ‘‘viewport.’’

- 6 -

obscured by the frontmost (unobscured) layer intersecting the rectangle. This is illustrated by
rectangle 4 in Figure 3. Rectangle 4 is an obscured part of both layers B and C, so these layers
store their obscured pieces off-screen, and mark them blocked by layer A.

5

4 3

2

1

5
4

2

1

4 3

Layer C

Layer B

Layer A

_ _______

_ _______

_ ______________

_ ______________

_ _______

_ __________

_ ____________

_ _____

Figure 3. Rectangle 4 is obscured in layers B and C, and is maintained off-screen by both. The addition of
layer C divides the obscured part of layer B into two rectangles, 3 and 4.

Rectangles 3 and 4 in layer B (Figure 3) may be stored as a single rectangle, as they were in
Figure 2. They are stored as two because if layer C is later moved to the front of the screen (i.e.
the top of the pile of layers), it will obscure portions of both layers A and B. Rectangle 4 in layer
B would be obscured by C, but rectangle 3 would still be obscured by A. To simplify the algo-
rithms for rearranging layers, the layer creation routine does all necessary subdivision when the
layer is first made, so when layer C is created*, the obscured rectangle in B is split in two along
the edge of the new layer.

The layer structure is:

typedef struct{
Word *base; /* start of data */
unsigned width; /* width in words */
Rectangle rect; /* image rectangle */
Obscured *obs; /* linked list of obscured rectangles */
Layer *front; /* adjacent layer in front */
Layer *back; /* adjacent layer behind */

} Layer;
typedef struct{

Layer *lobs; /* frontmost obscuring Layer */
Bitmap *bmap; /* where the obscured data resides */
Obscured *next; /* chaining */
Obscured *prev;

} Obscured;

The first part of the Layer structure is identical to that of a Bitmap. Actually, the Bitmap
structure has an extra item to it: a NULL obs pointer, so a Bitmap may be passed to a graphics
routine expecting a Layer as argument. The next section explains, among other things, why a

* Despite Figure 3, layer C is actually created at the front, but the argument is nonetheless true.

- 7 -

Bitmap with a NULL obs pointer looks like a Layer (and vice versa).

The individual Layers are chained together as a doubly-linked list, in order from ‘‘front’’ to
‘‘back’’ on the screen (when they do not overlap, the order is irrelevant). Besides the link point-
ers, a Layer structure contains a pointer to the list of obscured rectangles and the bounding rect-
angle on the screen. The obscured lists are also doubly linked, but in no particular order. Each
element in the obscured list contains a Bitmap for storing the off-screen image, and a pointer to
the frontmost Layer that obscures it. As we shall see later, an Obscured element need only record
which (unobscured) Layer is on the screen ‘‘in front’’ of it, not any other obscured Layers which
also share that portion of the screen. The screen coordinates of the obscured Rectangle are held
in the rect field of the Bitmap structure pointed to by the Obscured list entry,
Obscured.bmap->rect. All coordinates in the layer manipulations are screen coordinates.

Note that a Bitmap holding an obscured rectangle of a Layer has in its rect field a defini-
tion of the screen space it would occupy were it visible. This is an appealing model: as a Layer’s
contents are subdivided into visible and obscured portions, so is its coordinate system. More
generally, since a Layer structure must contain a rectangle defining the portion of the screen it
occupies, so must a Bitmap, because Layers are simply a generalization of Bitmaps.

Layerop

layerop() is the main interface between layers and the bitmap graphics primitives. Given
a Layer, a Rectangle within the Layer, and a bitmap operator, it recursively subdivides the Rect-
angle into Rectangles contained in single Bitmaps, and invokes the operator on the
Rectangle/Bitmap pairs. To simplify the operators, layerop() also passes along, unaltered, a
pointer to a set of parameters to the bitmap operator. For example, to clear a rectangle in a layer,
layerop() is called with the target Layer, the rectangle within the layer in screen coordinates,
and a procedure (the bitmap operator) to invoke rectf(). layerop() divides the rectangle
into its components in obscured and visible portions of the layer, and calls the procedure to clear
the component rectangles. A complete example is worked through at the end of this section.
layerop() itself does no graphical operation, it merely controls graphical operations done by the
bitmap operator handed to it. It is a functional that turns a bitmap operator into a layer operator.

layerop() first clips the target Rectangle to the Layer, then calls the recursive routine
Rlayerop() to do the subdivision:

/*
* Clip to outer rectangle of layer, then call Rlayerop()
*/
layerop(lp, fn, r, otherargs)

Layer *lp;
procedure (*fn)(); /* Pointer to bitmap operator */
Rectangle r;
misc otherargs; /* Other arguments used by (*fn)() */

{
r = intersection of r and lp->rect;
if(r not null)

Rlayerop(lp, fn, r, otherargs, lp->obs);
}

The argument (*fn)() is the pointer to the bitmap-level procedure. Rlayerop() recursively
chains along the obscured list of the Layer, performing the operation on the intersection of the
argument Rectangle and the obscured Bitmap, and passing non-intersecting portions on to be
intersected with other Bitmaps on the obscured list. When the obscured list is empty, the rectan-
gle must be drawn on the screen.

The code to test if two rectangles overlap is simple, but not well known:

- 8 -

rectXrect(r, s) /* Do r and s intersect? */
Rectangle r, s;

{
return(r.origin.x < s.corner.x &&

s.origin.x < r.corner.x &&
r.origin.y < s.corner.y &&
s.origin.y < r.corner.y);

}

The C && operator is a logical AND that does not evaluate the right operand if the left operand is
false. Similarly, the == operator used below is the equality operator.

Here is Rlayerop:

/*
* Rlayerop -- recursively subdivide and intersect
* rectangles with obscured bitmaps in layer
*/
Rlayerop(lp, fn, r, otherargs, op)

Layer *lp;
procedure (*fn)();
Rectangle r;
misc otherargs;
Obscured *op; /* Element of obscured list with which

to intersect r */
{

if(op == NULL) /* This rectangle not obscured */
(*fn)(lp, r, display, otherargs, op); /* Draw on screen */

else if(rectXrect(r, op->bmap->rect) == FALSE) /* They miss */
Rlayerop(lp, fn, r, otherargs, op->next); /* Chain */

else{ /* They must intersect */
if(r.origin.x < op->bmap->rect.origin.x){

Rectangle temp = piece of r left of op->bmap->rect;
Rlayerop(lp, fn, temp, otherargs, op->next);
r->origin.x = op->bmap->rect.origin.x;

}
/* etc. for other three sides of rectangle */
/* What’s left goes in this obscured bitmap */
(*fn)(lp, r, op->bmap, otherargs, op);

}
}

The Layer pointer and Obscured pointer are passed to the bitmap operator ((*fn)())
because, although they are clearly not needed for graphical operations, layerop()’s subdivision
is useful enough to be exploited by some of the software to maintain the layers themselves; we
will see an example of such usage later on. Note that if layerop() is handed a Layer with a
NULL obs pointer, or a Bitmap, its effect is simply to clip the rectangle and call the bitmap opera-
tor.

So far, otherargs has been referred to in a deliberately vague manner. In practice, lay-
erop() works something like the standard C formatted output routine printf(): after the
arguments required by layerop() (the Layer, bitmap operator and Rectangle), the calling func-
tion passes the further arguments needed by the Bitmap operator. layerop() passes the
address of the first of these arguments through to the operator, which therefore sees a pointer to
a structure containing the necessary arguments.

The following example illustrates the action of layerop(). Although we will see several

- 9 -

examples later, this is the simplest and most common use. lblt() uses layerop() and bit-
blt() to copy an off-screen Bitmap to a Rectangle within a Layer. The Bitmap may contain, for
example, a character. The general case of copying a Rectangle from one Layer to another will be
discussed later.

Lblt(l, r, db, fp, o)
Layer *l;
Rectangle r;
Bitmap *db; /* Destination Bitmap */
struct{

Bitmap *sb; /* Source Bitmap */
int f; /* Function code */

} *fp;
Obscured *o;

{
bitblt(fp->sb, r, db, r.origin, fp->f);

}

lblt(l, sb, r, f)
Layer *l;
Bitmap *sb;
Rectangle r;

{
layerop(l, Lblt, r, sb, f);

}

Notice that the bulk of the code is declarations. This code assumes the source Bitmap is in screen
coordinates; if it were not, extra arguments to lblt() would be passed to the operation routine
Lblt() to describe the necessary coordinate transformation. The ‘‘extra’’ arguments to lay-
erop, sb and f, are seen by Lblt as elements of a structure pointed to by fp.

_ _____
_ _____

Layer B

Layer A

_ ___

_ ___

_ ______________

_ ______________

_ _______

_ __________

Figure 4. Drawing a rectangle (for example a character) in a layer. Some of the rectangle is drawn
on the screen, some in the obscured parts of the layer. The portion of the rectangle overlapping layer
A is drawn in the obscured bitmap, not on the screen.

- 10 -

As an example, consider drawing a character (the hashed rectangle) in Layer B in Figure 4.
The first call to Rlayerop() has op set to the obscured, off-screen, element of layer B. op is not
NULL, nor is the overlap of r and rp->rect, so we fall into the last block of the large if-else: part
of the rectangle must be drawn in this obscured bitmap. The test

if(r.origin.x < op->bmap->rect.origin.x)

succeeds, so the right portion of the rectangle (to the right of Layer A) is cut off and passed on to
a second invocation of Rlayerop(). Here, the first if statement succeeds, the visible portion of
the rectangle is drawn on the screen, and Rlayerop returns to its first invocation. No further
clipping is required, so the left portion of the rectangle is drawn in the obscured bitmap and the
job is complete.

Although it is a complicated operation, layerop() is fast compared to the expensive
graphics operations it invokes. When layerop() is called, its overhead is usually unimportant.
This is because the data structures to manipulate layers were explicitly designed to make drawing
as rapid as possible, because that is the most common operation. The less common inter-layer
manipulations such as creating and deleting layers are slower, but their price is still reasonable,
considering how relatively infrequently they are invoked.

Upfront

There are three basic transformations that can in principle be applied to layers: changing
the dimensions of a layer (scaling); changing the position of a layer on the screen (translation);
and changing the front-to-back positions of overlapping layers (stacking).

The issues of scaling — changing a layer’s size, as distinct from changing the scale of the
coordinate systems inside the layer — and translation are not handled at all by the layer soft-
ware, primarily because the subdivided nature of the data structures makes them difficult to
implement. This is not to say that scaling and translation are not important transformations.
Translation services in particular must be provided, perhaps by creating a new layer at the desti-
nation position, using lbitblt() (the generalized bitblt() operator, discussed later) to copy
the data to the new position, and deleting the old layer. Note that the data in the layer can be
dragged dynamically across the screen, using an auxiliary bitmap to hold the data obscured by
the dragged rectangle or even just dragging a rectangular outline, without dynamically and
incrementally modifying the layer data structure. Given the relative complexity of the subdi-
vided layer structure, this approach is more reasonable, and certainly adequate (it is the way our
higher-level software does translation). The notion of copying the data rather than signalling the
application program to recreate it is consistent with the layer model: the application program is
freed from the responsibility of maintaining its layer during rearrangement of the layers on the
screen.

Scaling, however, does not fit as well into the software. Because there is no display list, the
data in the different-sized layer cannot be recreated perfectly by the lower-level software — at
best, an intersection of the source and destination layers can be maintained. We have no solution
to this problem, but don’t regard it as critical; the importance of the extended bitmap idea is pow-
erful enough that we prefer to give up low-level support for scaling rather than revert to display
lists. Also, it is unclear whether a layer should be regarded as a window or a viewport. Does a
different-sized layer show the same thing at a different scale or a different-sized portion of the
same thing? For example, if a large layer contains a picture composed of incompressible bitmaps,
such as a page of characters in a text editor, what should happen to the image if the layer is
shrunk to half its size? In particular, should the same configuration of smaller characters be
drawn, or fewer characters the same size? Either could be correct under some conditions, and
rather than make a decision we chose to ignore the issue.

Any stacking transformation can be defined as a sequential set of one-layer rearrangement
operations, moving a single layer to another position, such as the front or back of the stack of lay-
ers. For example, the stack can be inverted by an action similar to counting through a deck of
cards. upfront() is an operator that moves a layer to the front of the stack, making it

- 11 -

completely visible. It is the only stacking operator in the layer software, because in the couple of
places where a different operation is required, the desired effect can be achieved, with acceptable
efficiency, by calls to upfront(). The action of pulling a layer to the front was chosen because it
is the most natural. When something interesting happens in a partially obscured layer, the
instinctive reaction is to pull the layer to the front where it can be studied. upfront() also turns
out to be a useful operation during the creation and deletion of layers.

After Before

Layer B

Layer A

_ ___

_ ___

_ __________

_ __________

_ ______________

_ __________

_ ___

_ ___

_ ______________

_ ______________

_ _______

_ __________

Layer B

Layer A

Figure 5. Moving a layer to the front requires interchanging its off-screen bitmaps with screen rectangles.

upfront() has a simple structure. Most of the code is concerned with maintaining the
linked lists. The basic algorithm is to exchange the obscured rectangles in the layer with those of
the layer obscuring them, swapping the contents of the obscured bitmap with the screen (Figure
5). Since the obscured rectangle has the same dimensions before and after the swap, the
exchange can be done in place, and it is not necessary to allocate a new bitmap, we need merely
link it into the new obscured layer. Obscured rectangles are marked with the frontmost obscuring
layer for upfront()’s benefit: the frontmost layer is the layer that occupies the portion of the
screen the rectangle would occupy were it at the front.

- 12 -

/*
* upfront -- pull layer to the front of the screen
*/
upfront(lp)

Layer *lp;
{

Layer *fr; /* a layer in front of lp */
Layer *beh; /* a layer behind lp */
Obscured *op;

for(fr = each layer in front of lp){
for(op = each obscured portion of lp){

if(op->lobs == fr){ /* fr obscures op */
screenswap(op->bitmap, op->rect);
unlink op from lp;
link op into fr;

}
}

}
move lp to front of layer list;
for(beh = all other Layers from back to front)

for(op = each obscured portion of beh)
if(lp->rect overlaps op->bmap->rect)

op->lobs = lp; /* mark op obscured by lp */
}

screenswap() interchanges the data in the bitmap with the contents of the rectangle on
the screen, in place. It is easily implemented, without auxiliary storage, using three calls to bit-
blt() with function code XOR. Note that because of the fragmentation of the obscured portions
done when a new Layer is created, if lp->rect and op->bmap->rect intersect, the Layer must
completely obscure it. Note also that it is upfront() which enforces the rule that the frontmost
Layer obscuring a portion of a second Layer is the Layer marked as obscuring it. Only if these
two Layers are interchanged is the screen updated.

The last loop is required; it is not sufficient to mark obscured rectangles only in the main
loop, because rectangles initially behind lp may also need to be marked.

Dellayer

It is simpler to delete a Layer than to create one, so we will discuss deletion first. The algo-
rithm is easy:

1) Pull the layer to the front. It now has no obscured pieces, and is a contiguous rectangle on
the screen.

2) Color the screen rectangle the background color.

3) Push the layer to the back. All storage needed for the obscured portions of the layer is now
bound to the layer, since it obscures no other layer.

4) Free all storage associated with the layer.

5) Unlink the layer from the layer list.

A special routine, the opposite of upfront(), could be written to push the layer to the
back, but upfront() can be used for the task:

- 13 -

/*
* dellayer -- delete a layer
*/
dellayer(lp)

Layer *lp;
{

Obscured *op;

upfront(lp);
background(lp->rect);
/* Push to back using upfront */
while(lp not rearmost layer)

upfront(rearmost layer);
/* Free the storage */
for(op = each obscured part of lp){

bfree(op->bmap);
free(op);

}
unlink lp from Layer list;

}

Using successive calls to upfront() to push a layer to the back gives the screen a curious
appearance during the deletion. dellayer() is so simple, though, that it seems unnecessary to
give it extra support by providing a more efficient "downback()" routine. upfront() does not
join disconnected obscured bitmaps which could be joined because of the deletion, although it
could. The difficulty of recognizing which bitmaps can be joined is too high to justify the usually
small storage compaction and execution efficiency that would be gained thereby. Joining would
be facilitated if the obscured lists of the layers contained information about which layer caused
which edge to be cut during creation (see, for example, rectangle 2 in Figure 3). In retrospect, it
would probably have been better to use some form of tree structure for the obscured lists, with an
indication at each node of the layer ‘‘responsible’’ for creating the obscured element or dividing
the underlying structure into two or more elements.

Newlayer

Making a new layer is the most difficult layer operation, for it may require modifying
obscured lists of other layers. If the new layer creates any new overlaps, the obscured list of the
overlapped layer must be restructured so that upfront() need not subdivide any rectangles to
pull the obscured layer to the front. The creation routine, newlayer(), pays the price for the
simplicity of upfront() and layerop().

The basic structure of newlayer() is to build the layer at the back, constructing the
obscured list by intersecting the layer’s rectangle with the obscured rectangles and visible por-
tions of the current layers. After allocating storage for the obscured bitmaps, the layer is pulled
to the front, making it contiguous on the screen and forcing the rectangles obscured by the new
layer to contain the new storage required by the addition of the new layer. Finally, the screen
rectangle occupied by the new layer is cleared to complete the operation.

Several ancillary routines are used by newlayer(). addrect() adds rectangles to the
obscured list, obs, of the new layer. Since the new layer is built at the ‘‘back’’ of the screen, any
obscured rectangle of the new layer will be obscured by a layer already on the screen.
addrect() builds the list of unique obscured rectangles, marked by which layer is currently
occupying the screen in each rectangle. To be sure that a rectangle is unique, it is sufficient to
check just the origin point of the rectangle. The rectangles passed to addrect() are ordered so
that the first layer associated with a particular rectangle occupies the screen in that rectangle.

- 14 -

/*
* addrect -- add (unique) rectangle to
* obscured list of new layer
*/
Obscured *obs; /* Pointer to obscured list for new layer */
addrect(r, lp)

Rectangle r;
Layer *lp; /* Layer currently occupying r on screen */

{
Obscured *op, *newop;

for(op = each element of obs)
if(op->rect.origin == r.origin)

return; /* Not unique */
newop = new Obscured;
newop->rect = r;
newop->lobs = lp;
link newop into obs list;

}

Because it is called once for each rectangle, addrect() takes time proportional to the square of
the number of obscured rectangles in the new layer. But since newlayer() will ultimately per-
form a series of expensive bitblt()’s the time taken by the list operations is insignificant.

addobs() does recursive subdivision of the obscured rectangles that intersect the new
layer, calling addrect() when an overlap is established. It is similar to layerop() except that
it does not chain along the obscured list, and no special action (i.e. storage allocation) is required
if the rectangles match exactly. As subdivided pieces are added to the obscured list of a current
layer, the original rectangle must remain in the list until all the subdivided pieces are also in the
list, whereupon it is deleted. New pieces must therefore be added after the original piece. When
the topmost call to addobs() returns, the subdivision (if any) is complete, and the return value is
whether the argument rectangle was subdivided. newlayer() then removes the original rectan-
gle from the list if addobs() returns TRUE.

- 15 -

/*
* addobs -- add obscured rectangle to list, subdividing obscured
* portions of layers as necessary
*/
boolean
addobs(op, argr, newr, lp)

Obscured *op;
Rectangle argr; /* Obscured rectangle */
Rectangle newr; /* Complete rectangle of new layer */
Layer *lp; /* Layer op belongs to */

{
Obscured *newop;
Rectangle r;
Bitmap *bp;

r = argr; /* argr will be unchanged through addobs() */
if(rectXrect(r, newr)){

/* This is much like layerop() */
if(r.origin.x < newr.origin.x){

Rectangle temp = piece of r left of newr;
addobs(op, temp, newr, lp);
r.origin.x = newr.origin.x;

}
/* etc. for other three sides */
/* r is now contained in rectangle of new layer */
if(r == argr){ /* no clip, just bookkeeping */

addrect(r, lp);
return FALSE; /* No subdivision */

}
addrect(r, lp);

}
bp = balloc(r);
newop = new Obscured;
/* Copy the subdivided portion of the image */
bitblt(op->bmap, r, bp, bp->rect.origin, STORE);
newop->bmap = bp;
newop->rect = r;
newop->lobs = lp; /* Layer lp obscures this part of the new layer */
link op into lp->obs;
return TRUE; /* Subdivision */

}

- 16 -

newlayer() is long but straightforward.

Obscured obs; /* obscured list of new layer when at back */
/*
* newlayer -- make a new layer in rectangle r of bitmap *bp
*/
Layer *
newlayer(bp, r)

Bitmap *bp;
Rectangle r;

{
Layer *lp, *newlp;
Obscured *op;

/* First build, in obs, a list of all obscured rectangles that
* will be obscured by the new layer, doing subdivision with
* addobs()
*/
obs = NULL;
for(lp = each layer from front to back){

for(op = each obscured portion of lp){
if(rectXrect(r, op->rect) &&

addobs(op, op->rect, r, lp)){
unlink op from lp->obs;
bfree(op->bmap);
free(op);

}
}

}
/* Now add the rectangles not currently obscured, but that will
* be obscured by new layer, by building layer & calling layerop()
*/
newlp = new Layer;
Bitmap part of newlp = *bp;
newlp->obs = obs; /* currently obscured ... */
for(lp = each layer from front to back)

layerop(lp, addpiece, lp->rect);
newlp->obs = obs; /* ... and soon to be */
for(op = each element of obs)

op->bmap = balloc(op->rect);
link newlp into back of layer list;
upfront(newlp);
rectf(newlp->rect, CLR); /* Clear the screen rectangle */
return newlp;

}

- 17 -

newlayer() takes an argument Bitmap, which is typically the screen Bitmap display,
but may be any other. It is a simple (untried) generalization from Layers within Bitmaps to Lay-
ers within Layers, and a true hierarchy.

addpiece() is a trivial routine to add to the obscured list the rectangles that are currently
unobscured (i.e. have only one layer) but that will be obscured by the new layer.

addpiece(lp, r, bp, otherargs, op)
Layer *lp;
Rectangle r;
Bitmap *bp;
char *otherargs; /* Unused */
Obscured *op;

{
if(op == NULL) /* This piece occupied by one layer only */

addrect(r, lp);
/* Otherwise it’s already in obs list */

}

Scrolling and the general bitblt operator

So far, we have only discussed support for graphics, not graphical actions themselves. This
and the next section, on scrolling and line drawing, illustrate how difficult graphics can be on a
bitmap display, and how layerop() helps.

For simplicity of exposition, this section uses as an example the case of scrolling a layer:
although the subdivision of rectangles can get complicated in sophisticated examples, the issues
are all addressed by a simple case. Since the general case is not significantly harder to imple-
ment, this section presents a general lbitblt() operator that extends the bitmap-level bit-
blt() functionality to layers.

Scrolling a layer — moving a layer full of text up one line — is a special case of a bitblt
operation. Scrolling a screen rectangle r is a single bitblt:

#define NLSZ 16 /* height of a text line */
bitblt(display, Rect(r.origin, Pt(r.corner.x, r.corner.y-NLSZ)),

display, Pt(r.origin.x, r.origin.y+NLSZ), STORE);

that copies all but the first line of text up one line. Rect() and Pt() create Rectangles and
Points from their arguments. Scrolling a layer requires a series of bitblts, which must also be
done in a certain order. Figure 6 illustrates a simple example of scrolling a partially obscured
layer. The scroll is broken into three bitblts, so that the source and destination rectangles each lie
within a single bitmap.

The routine lbitblt() has semantics identical to bitblt(), but accepts Layer arguments
as well as Bitmaps, and does the necessary subdivision of obscured rectangles and executes the
atomic bitblt() calls in the correct order. There are two basic methods to organize lbit-
blt(). The first method calls layerop() to create a list of source rectangles by dividing the
original rectangle ((B+C+D) in Figure 6, with (A+B) off-screen and (C+D) visible) into a set of
rectangles contained within single bitmaps. layerop is then called for each source rectangle to
subdivide it so the destination rectangles are also contained in single bitmaps (separating C and
D in Figure 6 because c is in a different bitmap from d). This has the disadvantage that it calls
layerop() once for each source rectangle, although simpler, faster code can accomplish the
task.

The second method, and the one we use, calls layerop() twice: once to subdivide the
source rectangles and once to subdivide the destination rectangles. The loop to intersect the
source and destination rectangles is then trivial.

lbitblt() uses the defined type ListElement to couple the bitmaps to the rectangles:

- 18 -

b

c
d

_ ________________

_ ________________________

_ ________________________

_ ________________

_ ________________

_ ________________________

_ ________________________

_ ________________

A

B

C
D

Figure 6. To scroll the rear layer, the source rectangles B through D are copied to the destination rectangles b
through d.

typedef struct{
Rectangle rect;
Bitmap *bp;

} ListElement;

The type List chains together ListElements. Two calls to layerop(), one in the coordinate sys-
tem of the source Layer and one in the coordinates of the destination, generate the lists of rectan-
gles in sorted order. A simple nested loop then executes the component bitblt() calls:

Point delta; /* difference between source and dest. origin */
List SrcList; /* list of source rect/bitmap pairs */
List DestList; /* list of destination rect/bitmap pairs */

lbitblt(sl, rect, dl, pt, f)
Layer *sl, *dl;
Rectangle rect;
Point pt;
Code f;

{
ListElement *s, *d;
Rectangle r;

delta = pt - rect.origin;
layerop(sl, Pass, rect, SrcList);
layerop(dl, Pass, raddp(rect, delta), DestList);
for(s = each element of SrcList)

for(d = each element of DestList) {
r = intersection of d->rect

and raddp(s->rect, delta);
if(r not null)

bitblt(s->bp, rsubp(r, delta),
d->bp, r.origin, f);

}
}

raddp() adds its second argument, a Point, to the origin and corner of its first argu-
ment, a Rectangle; rsubp() is the corresponding subtraction operator. Pass() is a trivial

- 19 -

routine to create the lists. The rectangles in the lists are sorted according to an ordering operator
lessthan().

Pass(lp, r, sb, ap, op)
/* the usual declarations */
struct {

List l;
} *fp;

{
ListElement *e;

for(e = each element of fp->l)
if(not lessthan(r, e->rect)) {

insert the ListElement {sb, r} into fp->l
before e;

return;
}

append {sb, r} to fp->l
}

boolean
lessthan(a, b)

Rectangle a, b;
{

if((a->origin.y < b->corner.y) && (b->origin.y < a->corner.y))
return ((a->origin.x - b->origin.x)*delta.x) >= 0;

else
return ((a->origin.y - b->origin.y)*delta.y) >= 0;

}

The first test sees if the two rectangles overlap in y, and if so checks the x ordering; otherwise the
y ordering is sufficient. The ordering of the lists simplifies doing the bitblts in the correct
sequence. For the scrolling example, delta.y is positive, and lessthan() orders the rectan-
gles so they are copied in decreasing y order (see Figure 6).

There are a few efficiency issues. If the source and destination bitmaps are distinct in the
uppermost call, such as in drawing a character in a layer, the rectangles need not be sorted, but
lbitblt() sorts them anyway. Also, if one or both of the layers has an empty obscured list,
lbitblt() could recognize these degenerate cases and call bitblt() directly if neither layer
has obscured components, or lblt() if only one does.

More seriously, the implementation of lbitblt() presented here contains some code with
quadratic complexity — the inner loops of Pass and lbitblt(). (The first method described
above only executes n times, but calls layerop() to (recursively) run down the destination lists,
so the complexity is the same.) In our application the obscured lists are typically short, so this
complexity is dwarfed by the expense of the underlying bitblt() calls. If this were not true, it
would be straightforward to rewrite both Pass and lbitblt() to use nlogn search algorithms.
The structure of the code would be the same, however, and the use of layerop() to organize
the clipping would be unaffected.

Lines

Drawing lines on a dot-matrix display is an old problem (see e.g. [new79]). Drawing lines
in layers is more difficult, because the sequence of dots approximating a line must be indepen-
dent of the structure of the layer. To draw a line efficiently in a partially obscured layer, the line-
drawing algorithm must draw the line as a set of line segments in bitmaps, but the endpoints of
the segments (which must be in integer coordinates) might not be points on the actual line being
approximated. A line from (0,0) to (300,100) is not approximated by the same points as two lines,

- 20 -

one from (0,0) to (100,33) and one from (100,33) to (300,100). Of course, if efficiency is not an
issue, lines may be drawn by generating the set of dots for the approximation and, for each dot,
deciding in which bitmap it will be drawn. Here we will assume that a line segment may be
drawn efficiently in a bitmap (which is true on any reasonable display) and that the problem is
one of dividing up the original line.

Most line-drawing algorithms simulate a digital differential analyzer, or DDA, to reduce
the strength of the rational arithmetic in

y =
∆x
∆y___x + y 0

to increments and decrements. Different DDA’s approximate a given line by different sets of
points. Bresenham’s algorithm [bre65] has no multiplications or divisions, and uses only integer
arithmetic:

int e, ∆x, ∆y;
e=2∆y-∆x;
for(i=1; i<∆x; i++){

drawpoint(x, y);
if(e>0){

y++;
e+=2∆y-2∆x;

}else
e+=2∆y;

x++;
}

(As mentioned earlier, this algorithm is usually implemented efficiently; drawpoint() is not a
subroutine call, and the constants come out of the loop). Here, e is an (offset and scaled) error
term that represents the vertical distance between the actual line and the approximating points.
Each time the algorithm draws a point, e is adjusted to track the local deviation from the actual
line. When e is positive, the actual line is too far above the dots, and the dots are therefore
moved up one unit in y.

The line algorithm can be restarted as it passes from obscured bitmap to bitmap in the layer
by carrying the value of e across the boundary. But since layerop calls the bitmap-level opera-
tors in a non-deterministic order, a simpler solution is to evaluate e at the (x ,y) location where
the line intersects the bitmap, and reset the line algorithm in each component bitmap. We are
assuming 0 < ∆y /∆x ≤ 1, a shallow line of positive slope. If we further assume the real line
passes through (0 , 0) we can analytically specify points generated by Bresenham’s algorithm.
The equation of the actual line is

y∆x − x∆y = 0 ,

so at a generated point

y∆x − x∆y = r

where r is the residual — the deviation from the actual line, measured parallel to the y axis. For
computational efficiency, e is offset and scaled from r:

e= − 2r + 2∆y − ∆x (1)

To minimize r, we round to calculate y:

y =

 2∆x

x2∆y + ∆x_ _________

(2)

implying, as above,

r = y∆x − x∆y .

- 21 -

Substituting,

e= (2x + 2) ∆y − (2y + 1) ∆x (3)

Note that if (x ,y) = (0 , 0), e= 2∆y − ∆x, as in the original algorithm. Equation 3 can also be derived
directly from the algorithm (and vice versa). Given equations 2 and 3, we can break a line into a
set of segments in bitmaps independently of the layer’s configuration by resetting the DDA for
each segment. This method generates a unique approximation because the state of the DDA is a
strict function of x.

One problem remains. The clipping routine (see [new79]) that divides the line into seg-
ments individually within bitmaps may clip to a horizontal or a vertical edge of a bitmap. If the
edge is horizontal, several possible x values may be chosen (see Figure 7). Because lines are half-
open, the desired value is the least x such that (x ,y) is a point on the approximated line, as
defined by (1). It can be shown that the desired value is

x =

 2∆y

2y∆x − ∆x_ _________

. (4)

Approx. points
Actual line

. . .

. . . desired point

Outside Layer

Inside Layer

Edge of Layer_ __________

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ _____

_ __________

Figure 7. Lines must be clipped to the first point outside a layer or bitmap.

Turning these equations into working code involves a few obvious transformations to cover
all possible cases. The transformations must be done carefully, to preserve the half-open prop-
erty of lines. Given a routine clipline() which clips a line segment to a bitmap and draws it,
using a line-drawer which loads the DDA based on the initial x value, layerop() can control
drawing a line in a layer:

- 22 -

Lline(lp, r, db, fp, op)
Layer *lp;
Rectangle r;
Bitmap *db;
struct{

Point p0, p1; /* Endpoints of complete line */
int mode; /* Function code */

}*fp;
Obscured *op;

{
clipline(db, r, fp->p0, fp->p1, fp->mode);

}
lline(lp, p, q, f)

Layer *lp;
Point p, q;
int f;

{
setline(p, q); /* Initialize global parameters for line() */
layerop(lp, Lline, lp->rect, p, q, f);

}

setline() initializes the global variables for the line, in particular ∆x and ∆y, and canoni-
calizes the line by coordinate transformation so that 0 < ∆y /∆x ≤ 1. This line algorithm has
advantages over an unadorned DDA, even for non-overlapping bitmaps: the sequence of dots
generated is independent of the direction in which the line is drawn, and portions of a line may
be ‘‘undrawn’’. Both these advantages stem from the DDA being a strict function of x, instead of
the distance from the starting point of the line.

The point of this section is not that lines can be drawn in layers, but how layerop helps
draw them. Given an object to be drawn — line, circle, ellipse, polygon, spline, etc. — and an
operator that can draw the object in a bitmap, layerop will invoke the operator with the clipped
rectangle/bitmap pairs that draw the complete object in a layer. The implementation of the bit-
map operators can be tuned for performance; in our application, we build lines out of line seg-
ments with a restartable DDA for maximum speed, but draw arcs and circles as sequences of
points because we don’t draw them nearly as often. If circles were important to an application,
the same sort of DDA restarting could be applied, using layerop to define the clipping rectan-
gles for each component of the circle.

Conclusions

The software described here is in day-to-day use on hundreds of ‘‘Blit’’ terminals through-
out Bell Labs, providing an asynchronous window interface to the multi-programmed Unix sys-
tem. Unlike previous window systems, the layers software does not keep display lists [mey81],
force ‘‘repainting’’ during window operations [tes81] or restrict graphical operations in any way.
Instead, it supports general bitblt-style raster graphics by extending the notion of a bitmap to
encompass rectangular regions which are subdivided into visible and invisible portions, and pro-
vides an elegant interface between the simple, traditional bitmap operations and the more gen-
eral ones. The role of the traditional ‘‘window manager’’ is reduced to providing a user interface.
In [mey81] appears the sentence, ‘‘Research needs to be done to develop a way in which to conve-
niently store and manipulate graphics data in the context of a window manager.’’ layerop()
and its associated primitives meet this challenge.

- 23 -

Acknowledgements

Many people helped develop the algorithms discussed herein. The data structures grew
out of discussions with Ken Thompson; Doug McIlroy guided me through the mazes of integer
geometry; Peter Weinberger got my line-drawing theorems straight; Andrew Koenig simplified
the Bitmap data structure; Andrew Hume spent a difficult week getting the details of lbit-
blt() right; John Reiser wrote an astonishing implementation of bitblt(), on which it all
depends; and Brian Kernighan, Dave MacQueen and Chris van Wyk made helpful constructive
criticism on an early manuscript, which led me to rethink and rewrite large portions of the soft-
ware as well as the paper. I thank them all. I am most deeply indebted, however, to Bart Locan-
thi, who wrote the first bitblt(), greatly improved the interface to layerop(), and, most
important, designed and built a bitmap terminal and placed it on my desk, thereby challenging
me to tame the bitmap world.

References

[bre65] Bresenham, J. E., ‘‘Algorithm for computer control of a digital plotter,’’ IBM Syst. J., 4
(1):25-30, 1965
[gui82] Guibas, L. J. and J. Stolfi, ‘‘A Language for Bitmap Manipulation,’’ Transactions on
Graphics, 1 (3): 191, July 1982.
[ing81] Ingalls, D. H. H., ‘‘The Smalltalk Graphics Kernel,’’ Byte, 6 (8): 168, August 1981.
[lan79] Lantz, K. and R. Rashid, ‘‘Virtual Terminal Management in a Multiple Process Environ-
ment,’’ Proceedings of the 7th Symposium on Operating Systems Principles, p. 86, December 1979.
[mey81] Meyrowitz, N. and M. Mosher, ‘‘BRUWIN: An Adaptable Design Strategy for Win-
dow Manager/Virtual Terminal Systems,’’ Proceedings of the 8th Symposium on Operating Systems
Principles, 15 (5): 180, December 1981.
[new79] Newman, W. M., and R. F. Sproull, Principles of Interactive Computer Graphics, 2nd Ed.,
McGraw Hill, New York, 1979
[tes81] Tesler, Larry, ‘‘The Smalltalk Environment,’’ Byte, 6 (8): 90, August 1981.
[wei81] Weinreb, D. and D. Moon, ‘‘Introduction to Using the Window System,’’ Symbolics, Inc.
1981.

