
BC � An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a languageand a compiler for doing arbitrary precisionarithmeticon the
PDP-11undertheUNIX® time-sharingsystem.Theoutputof thecompileris interpreted
andexecutedby a collection of routineswhich can input, output,and do arithmeticon
indefinitely large integers and on scaled fixed-point numbers.

Theseroutinesare themselvesbasedon a dynamic storageallocator. Overflow
does not occur until all available core storage is exhausted.

The languagehasa completecontrol structureaswell as immediate-modeopera-
tion. Functions can be defined and saved for later execution.

Two five hundred-digitnumberscanbemultiplied to give a thousanddigit resultin
about ten seconds.

A small collectionof library functionsis alsoavailable,including sin, cos,arctan,
log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

� to do computation with large integers,

� to do computation accurate to many decimal places,

� conversion of numbers from one base to another base.

March 25, 2003

BC � An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a languageanda compilerfor doingarbitraryprecisionarithmeticon theUNIX® time-sharing
system[1]. The compilerwaswritten to makeconvenientlyavailablea collectionof routines(calledDC
[5]) which are capableof doing arithmeticon integersof arbitrary size. The compiler is by no means
intended to provide a complete programming language.It is a minimal language facility.

Thereis a scalingprovision that permitsthe useof decimalpoint notation. Provisionis madefor
input andoutput in basesotherthandecimal. Numberscanbeconvertedfrom decimalto octal by simply
setting the output base to equal 8.

Theactuallimit on thenumberof digits thatcanbehandleddependson theamountof storageavail-
ableon themachine.Manipulationof numberswith manyhundredsof digits is possibleevenon thesmall-
est versions ofUNIX .

The syntax of BC has beendeliberatelyselectedto agreesubstantiallywith the C language[2].
Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplestkind of statementis an arithmeticexpressionon a line by itself. For instance,if you
type in the line:

142857 + 285714

the program responds immediately with the line

428571

Theoperators�, *, /, %, andˆ canalsobeused;they indicatesubtraction,multiplication,division, remain-
dering,andexponentiation,respectively.Division of integersproducesan integerresult truncatedtoward
zero. Division by zero produces an error comment.

Any term in an expressionmay be prefixedby a minussign to indicatethat it is to be negated(the
‘unary’ minus sign).The expression

7+�3

is interpreted to mean that �3 is to be added to 7.

More complexexpressionswith severaloperatorsandwith parenthesesareinterpretedjust asin For-
tran,with ˆ havingthegreatestbindingpower,then* and% and/, andfinally + and�. Contentsof paren-
thesesareevaluatedbeforematerialoutsidethe parentheses.Exponentiationsareperformedfrom right to
left and the other operators from left to right.The two expressions

aˆbˆc and aˆ(bˆc)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

- 2 -

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x. When, as in this case,
the outermost operator is an =, the assignment is performed but the result is not printed. Only 26 of these
named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling below).
The lines

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’, initially set
to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the input
base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who deal in
hexadecimal notation, the characters A�F are permitted in numbers (no matter what base is in effect) and
are interpreted as digits having values 10�15 respectively. The statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative and large
positive input bases are permitted but useless. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted, and they
are sometimes useful. For example, large numbers can be output in groups of five digits by setting ‘obase’
to 100000. Strange (i.e. 1, 0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued end
with \. Decimal output conversion is practically instantaneous, but output of very large numbers (i.e., more
than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one hundred digit
number takes about three seconds.

- 3 -

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of internal com-
putation or on the evaluation of expressions, but only affect input and output conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated quantities.
Numbers may have up to 99 decimal digits after the decimal point. This fractional part is retained in fur-
ther computations. We refer to the number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result has
a scale determined by the following rules. For addition and subtraction, the scale of the result is the larger
of the scales of the two operands. In this case, there is never any truncation of the result. For multiplica-
tions, the scale of the result is never less than the maximum of the two scales of the operands, never more
than the sum of the scales of the operands and, subject to those two restrictions, the scale of the result is set
equal to the contents of the internal quantity ‘scale’. The scale of a quotient is the contents of the internal
quantity ‘scale’. The scale of a remainder is the sum of the scales of the quotient and the divisor. The
result of an exponentiation is scaled as if the implied multiplications were performed. An exponent must be
an integer. The scale of a square root is set to the maximum of the scale of the argument and the contents
of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits being discarded
when necessary. In every case where digits are discarded, truncation and not rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to 0. In case
you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like other vari-
ables. The line

scale = scale + 1

increases the value of ‘scale’ by one, and the line

scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in internal com-
putation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computations (which are still con-
ducted in decimal, regardless of the bases) are performed to the specified number of decimal digits, never
hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to collide with
simple variable names. Twenty-six different defined functions are permitted in addition to the twenty-six
variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or more state-
ments, which make up the body of the function, ending with a right brace }. Return of control from a func-
tion occurs when a return statement is executed or when the end of the function is reached. The return
statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the definition.

- 4 -

These automatic variables are allocated space and initialized to zero on entry to the function and thrown
away on return. The values of any variables with the same names outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each level of call are protected. The
parameters named in a function definition are treated in the same way as the automatic variables of that
function with the single exception that they are given a value on entry to the function. An example of a
function definition is

define a(x,y){
auto z
z = x*y
return(z)

}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of arguments is
used.

Functions with no arguments are defined and called using parentheses with nothing between them:
b().

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a subscripted
variable (an array element). The variable name is called the array name and the expression in brackets is
called the subscript. Only one-dimensional arrays are permitted. The names of arrays are permitted to col-
lide with the names of simple variables and function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function, or may be declared as automatic in a func-
tion definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the function, and
thrown away on exit from the function. Array names which refer to whole arrays cannot be used in any
other contexts.

Control Statements

The ‘if’, the ‘while’, and the ‘for’ statements may be used to alter the flow within programs or to
cause iteration. The range of each of them is a statement or a compound statement consisting of a collec-
tion of statements enclosed in braces. They are written in the following way

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or

- 5 -

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=. The rela-
tion == stands for ‘equal to’ and != stands for ‘not equal to’. The meaning of the remaining relational oper-
ators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, so you will
not get a diagnostic message, but = really will not do a comparison.

The ‘if’ statement causes execution of its range if and only if the relation is true. Then control passes
to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is true. The
relation is tested before each execution of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expression1’. Then the relation is tested and, if true, the
statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed. The relation is tested,
and so on. The typical use of the ‘for’ statement is for a controlled iteration, as in the statement

for(i=1; i<=10; i=i+1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control statements.

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)
}

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will compute val-
ues of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=1
for(j=1; j<=m; j=j+1) x=x*(n�j+1)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate series
without regard for possible truncation errors:

- 6 -

scale = 20
define e(x){

auto a, b, c, d, n
a = 1
b = 1
c = 1
d = 0
n = 1
while(1==1){

a = a*x
b = b*n
c = c + a/b
n = n + 1
if(c==d) return(c)
d = c

}
}

Some Details

There are some language features that every user should know about even if he will not use them.

Normally statements are typed one to a line. It is also permissible to type several statements on a line
separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere that an
expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not parenthe-
sized.

x = a[i=i+1]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language. Con-
sult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as x=(y=z)
x =+ y x = x+y
x =� y x = x�y
x =* y x = x*y
x =/ y x = x/y
x =% y x = x%y
x =ˆ y x = xˆy
x++ (x=x+1)�1
x�� (x=x�1)+1
++x x = x+1
��x x = x�1

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct but unex-
pected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x=�y and x= �y. The first replaces x by x�y and the second by �y.

- 7 -

Three Important Things

1. To exit a BC program, type ‘quit’.

2. There is a comment convention identical to that of C and of PL/I. Comments begin with ‘/*’ and
end with ‘*/’.

3. There is a library of math functions which may be obtained by typing at command level

bc �l

This command will load a set of library functions which, at the time of writing, consists of sine (named ‘s’),
cosine (‘c’), arctangent (‘a’), natural logarithm (‘l’), exponential (‘e’) and Bessel functions of integer order
(‘j(n,x)’). Doubtless more functions will be added in time. The library sets the scale to 20. You can reset
it to something else if you like. The design of these mathematical library routines is discussed elsewhere
[3].

If you type

bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard. In this
way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References

[1] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual,Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language,Prentice-Hall, 1978.

[3] R. Morris, A Library of ReferenceStandardMathematicalSubroutines,Bell Laboratories internal
memorandum, 1975.

[4] S. C. Johnson, YACC� Yet Another Compiler-Compiler. Bell Laboratories Computing Science
Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC � An Interactive Desk Calculator.

- 8 -

Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in brackets [] is
optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators may
be blanks, tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments

Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers � ordinary identifiers, array identifiers and function identifiers.
All three types consist of single lower-case letters. Array identifiers are followed by square brackets, possi-
bly enclosing an expression describing a subscript. Arrays are singly dimensioned and may contain up to
2048 elements. Indexing begins at zero so an array may be indexed from 0 to 2047. Subscripts are trun-
cated to integers. Function identifiers are followed by parentheses, possibly enclosing arguments. The
three types of identifiers do not conflict; a program can have a variable named x, an array named x and a
function named x, all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal digits
A�F are also recognized as digits with values 10�15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is the
same as the order of presentation here, with highest appearing first. Left or right associativity, where appli-
cable, is discussed with each operator.

- 9 -

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal
on the left side of an assignment. The value of a named expression is the value stored in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name[expression]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the number of digits
after the decimal point to be retained in arithmetic operations. scale has an initial value of zero. ibase and
obase are the input and output number radix respectively. Both ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name([expression[, expression. . .]])

A function call consists of a function name followed by parentheses containing a comma-separated
list of expressions, which are the function arguments. A whole array passed as an argument is specified by
the array name followed by empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual arguments. If the function termi-
nates by executing a return statement, the value of the function is the value of the expression in the paren-
theses of the return statement or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least significant decimal
place. The scale of the result is the scale of the expression or the value of scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of the result is
zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to alter
the normal precedence.

3.2. Unary operators

The unary operators bind right to left.

- 10 -

3.2.1. � expression

The result is the negative of the expression.

3.2.2. ++ named-expression

The named expression is incremented by one. The result is the value of the named expression after
incrementing.

3.2.3. �� named-expression

The named expression is decremented by one. The result is the value of the named expression after
decrementing.

3.2.4. named-expression ++

The named expression is incremented by one. The result is the value of the named expression before
incrementing.

3.2.5. named-expression��

The named expression is decremented by one. The result is the value of the named expression before
decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression ˆ expression

The result is the first expression raised to the power of the second expression. The second expression
must be an integer. If a is the scale of the left expression and b is the absolute value of the right expression,
then the scale of the result is:

min (a×b, max (scale, a))

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two expressions, then
the scale of the result is:

min (a+b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely, a%b
is a�a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

3.5. Additive operators

The additive operators bind left to right.

- 11 -

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of the scales of
the expressions.

3.5.2. expression � expression

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named expression
on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =� expression

3.6.4. named-expression =* expression

3.6.5. named-expression =/ expression

3.6.6. named-expression =% expression

3.6.7. named-expression =ˆ expression

The result of the above expressions is equivalent to ‘‘named expression = named expression OP
expression’’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if , while, or
inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression >= expression

4.5. expression == expression

4.6. expression != expression

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers that are to be
local to a function need be declared with the auto command. The arguments to a function are local to the
function. All other identifiers are assumed to be global and available to all functions. All identifiers, global
and local, have initial values of zero. Identifiers declared as auto are allocated on entry to the function and
released on returning from the function. They therefore do not retain values between function calls. auto
arrays are specified by the array name followed by empty square brackets.

- 12 -

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On entry to a
function, the old values of the names that appear as parameters and as automatic variables are pushed onto a
stack. Until return is made from the function, reference to these names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control statements,
execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding them
with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execution of the
statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

statement
last-expression

}

All three expressions must be present.

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down. The identifiers can be
ordinary identifiers or array identifiers. Array identifiers are specified by following the array name by
empty square brackets. The auto statement must be the first statement in a function definition.

- 13 -

6.9. Define statements

define([parameter [, parameter . . .]]) {
statements }

The define statement defines a function. The parameters may be ordinary identifiers or array names.
Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and specifies the
result of the function. The first form is equivalent to return(0). The result of the function is the result of
the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is first
encountered. Because it is not treated as an executable statement, it cannot be used in a function definition
or in an if, for, or while statement.

