// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs.h" #include "os.h" static void unimplemented(int8 *name) { prints(name); prints(" not implemented\n"); *(int32*)1231 = 1231; } // Atomic add and return new value. static uint32 xadd(uint32 volatile *val, int32 delta) { uint32 oval, nval; for(;;){ oval = *val; nval = oval + delta; if(cas32(val, oval, nval)) return nval; } } // Blocking locks. // Implement Locks, using semaphores. // l->key is the number of threads who want the lock. // In a race, one thread increments l->key from 0 to 1 // and the others increment it from >0 to >1. The thread // who does the 0->1 increment gets the lock, and the // others wait on the semaphore. When the 0->1 thread // releases the lock by decrementing l->key, l->key will // be >0, so it will increment the semaphore to wake up // one of the others. This is the same algorithm used // in Plan 9's user-level locks. void lock(Lock *l) { if(m->locks < 0) throw("lock count"); m->locks++; if(xadd(&l->key, 1) == 1) return; // changed from 0 -> 1: we hold lock // otherwise wait in kernel while(semacquire(&l->sem, 1) < 0){ /* interrupted; try again */ } } void unlock(Lock *l) { if(m->locks < 0) throw("lock count"); m->locks++; if(xadd(&l->key, -1) == 0) return; // changed from 1 -> 0: no contention semrelease(&l->sem, 1); } // User-level semaphore implementation: // try to do the operations in user space on u, // but when it's time to block, fall back on the kernel semaphore k. // This is the same algorithm used in Plan 9. void usemacquire(Usema *s) { if((int32)xadd(&s->u, -1) < 0) semacquire(&s->k); } void usemrelease(Usema *s) { if((int32)xadd(&s->u, 1) <= 0) semrelease(&s->k); } // Event notifications. void noteclear(Note *n) { n->wakeup = 0; } void notesleep(Note *n) { if(n->sema.k == 0) initsema(&n->sema.k); while(!n->wakeup) usemacquire(&n->sema); } void notewakeup(Note *n) { if(n->sema.k == 0) initsema(&n->sema.k); n->wakeup = 1; usemrelease(&n->sema); } // BSD interface for threading. void osinit(void) { // Register our thread-creation callback (see {amd64,386}/sys.s) // but only if we're not using cgo. If we are using cgo we need // to let the C pthread libary install its own thread-creation callback. extern void (*libcgo_thread_start)(void*); if(libcgo_thread_start == nil) bsdthread_register(); } void newosproc(M *m, G *g, void *stk, void (*fn)(void)) { m->tls[0] = m->id; // so 386 asm can find it if(0){ printf("newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", stk, m, g, fn, m->id, m->tls[0], &m); } bsdthread_create(stk, m, g, fn); } // Called to initialize a new m (including the bootstrap m). void minit(void) { // Initialize signal handling. m->gsignal = malg(32*1024); // OS X wants >=8K, Linux >=2K signalstack(m->gsignal->stackguard, 32*1024); } // Mach IPC, to get at semaphores // Definitions are in /usr/include/mach on a Mac. static void macherror(int32 r, int8 *fn) { printf("mach error %s: %d\n", fn, r); throw("mach error"); } enum { DebugMach = 0 }; static MachNDR zerondr; #define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8)) static int32 mach_msg(MachHeader *h, int32 op, uint32 send_size, uint32 rcv_size, uint32 rcv_name, uint32 timeout, uint32 notify) { // TODO: Loop on interrupt. return mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify); } // Mach RPC (MIG) enum { MinMachMsg = 48, Reply = 100, }; #pragma pack on typedef struct CodeMsg CodeMsg; struct CodeMsg { MachHeader h; MachNDR NDR; int32 code; }; #pragma pack off static int32 machcall(MachHeader *h, int32 maxsize, int32 rxsize) { uint32 *p; int32 i, ret, id; uint32 port; CodeMsg *c; if((port = m->machport) == 0){ port = mach_reply_port(); m->machport = port; } h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE); h->msgh_local_port = port; h->msgh_reserved = 0; id = h->msgh_id; if(DebugMach){ p = (uint32*)h; prints("send:\t"); for(i=0; imsgh_size/sizeof(p[0]); i++){ prints(" "); runtime·printpointer((void*)p[i]); if(i%8 == 7) prints("\n\t"); } if(i%8) prints("\n"); } ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG, h->msgh_size, maxsize, port, 0, 0); if(ret != 0){ if(DebugMach){ prints("mach_msg error "); runtime·printint(ret); prints("\n"); } return ret; } if(DebugMach){ p = (uint32*)h; prints("recv:\t"); for(i=0; imsgh_size/sizeof(p[0]); i++){ prints(" "); runtime·printpointer((void*)p[i]); if(i%8 == 7) prints("\n\t"); } if(i%8) prints("\n"); } if(h->msgh_id != id+Reply){ if(DebugMach){ prints("mach_msg reply id mismatch "); runtime·printint(h->msgh_id); prints(" != "); runtime·printint(id+Reply); prints("\n"); } return -303; // MIG_REPLY_MISMATCH } // Look for a response giving the return value. // Any call can send this back with an error, // and some calls only have return values so they // send it back on success too. I don't quite see how // you know it's one of these and not the full response // format, so just look if the message is right. c = (CodeMsg*)h; if(h->msgh_size == sizeof(CodeMsg) && !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){ if(DebugMach){ prints("mig result "); runtime·printint(c->code); prints("\n"); } return c->code; } if(h->msgh_size != rxsize){ if(DebugMach){ prints("mach_msg reply size mismatch "); runtime·printint(h->msgh_size); prints(" != "); runtime·printint(rxsize); prints("\n"); } return -307; // MIG_ARRAY_TOO_LARGE } return 0; } // Semaphores! enum { Tmach_semcreate = 3418, Rmach_semcreate = Tmach_semcreate + Reply, Tmach_semdestroy = 3419, Rmach_semdestroy = Tmach_semdestroy + Reply, // Mach calls that get interrupted by Unix signals // return this error code. We retry them. KERN_ABORTED = 14, }; typedef struct Tmach_semcreateMsg Tmach_semcreateMsg; typedef struct Rmach_semcreateMsg Rmach_semcreateMsg; typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg; // Rmach_semdestroyMsg = CodeMsg #pragma pack on struct Tmach_semcreateMsg { MachHeader h; MachNDR ndr; int32 policy; int32 value; }; struct Rmach_semcreateMsg { MachHeader h; MachBody body; MachPort semaphore; }; struct Tmach_semdestroyMsg { MachHeader h; MachBody body; MachPort semaphore; }; #pragma pack off uint32 mach_semcreate(void) { union { Tmach_semcreateMsg tx; Rmach_semcreateMsg rx; uint8 pad[MinMachMsg]; } m; int32 r; m.tx.h.msgh_bits = 0; m.tx.h.msgh_size = sizeof(m.tx); m.tx.h.msgh_remote_port = mach_task_self(); m.tx.h.msgh_id = Tmach_semcreate; m.tx.ndr = zerondr; m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO m.tx.value = 0; while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){ if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_create"); } if(m.rx.body.msgh_descriptor_count != 1) unimplemented("mach_semcreate desc count"); return m.rx.semaphore.name; } void mach_semdestroy(uint32 sem) { union { Tmach_semdestroyMsg tx; uint8 pad[MinMachMsg]; } m; int32 r; m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX; m.tx.h.msgh_size = sizeof(m.tx); m.tx.h.msgh_remote_port = mach_task_self(); m.tx.h.msgh_id = Tmach_semdestroy; m.tx.body.msgh_descriptor_count = 1; m.tx.semaphore.name = sem; m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND; m.tx.semaphore.type = 0; while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){ if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_destroy"); } } // The other calls have simple system call traps in sys.s int32 mach_semaphore_wait(uint32 sema); int32 mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec); int32 mach_semaphore_signal(uint32 sema); int32 mach_semaphore_signal_all(uint32 sema); void mach_semacquire(uint32 sem) { int32 r; while((r = mach_semaphore_wait(sem)) != 0) { if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_wait"); } } void mach_semrelease(uint32 sem) { int32 r; while((r = mach_semaphore_signal(sem)) != 0) { if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_signal"); } }