/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002,2003,2004 Josh Coalson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include /* for malloc() */ #include /* for memcpy() */ #include "FLAC/assert.h" #include "FLAC/stream_decoder.h" #include "protected/stream_encoder.h" #include "private/bitbuffer.h" #include "private/bitmath.h" #include "private/crc.h" #include "private/cpu.h" #include "private/fixed.h" #include "private/format.h" #include "private/lpc.h" #include "private/md5.h" #include "private/memory.h" #include "private/stream_encoder_framing.h" #ifdef HAVE_CONFIG_H #include #endif #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) typedef struct { FLAC__int32 *data[FLAC__MAX_CHANNELS]; unsigned size; /* of each data[] in samples */ unsigned tail; } verify_input_fifo; typedef struct { const FLAC__byte *data; unsigned capacity; unsigned bytes; } verify_output; typedef enum { ENCODER_IN_MAGIC = 0, ENCODER_IN_METADATA = 1, ENCODER_IN_AUDIO = 2 } EncoderStateHint; /*********************************************************************** * * Private class method prototypes * ***********************************************************************/ static void set_defaults_(FLAC__StreamEncoder *encoder); static void free_(FLAC__StreamEncoder *encoder); static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size); static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples); static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); static FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], const FLAC__real real_signal[], FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits ); static FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame ); static unsigned evaluate_constant_subframe_( const FLAC__int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe ); static unsigned evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); static unsigned evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); static unsigned evaluate_verbatim_subframe_( const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ); static unsigned find_best_partition_order_( struct FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice ); static void precompute_partition_info_sums_( const FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ); static void precompute_partition_info_escapes_( const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ); #ifdef DONT_ESTIMATE_RICE_BITS static FLAC__bool set_partitioned_rice_( const FLAC__uint32 abs_residual[], const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ); static FLAC__bool set_partitioned_rice_with_precompute_( const FLAC__int32 residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ); #else static FLAC__bool set_partitioned_rice_( const FLAC__uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ); static FLAC__bool set_partitioned_rice_with_precompute_( const FLAC__uint32 abs_residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ); #endif static unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples); /* verify-related routines: */ static void append_to_verify_fifo_( verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples ); static void append_to_verify_fifo_interleaved_( verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples ); static FLAC__StreamDecoderReadStatus verify_read_callback_( const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], unsigned *bytes, void *client_data ); static FLAC__StreamDecoderWriteStatus verify_write_callback_( const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data ); static void verify_metadata_callback_( const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data ); static void verify_error_callback_( const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data ); /*********************************************************************** * * Private class data * ***********************************************************************/ typedef struct FLAC__StreamEncoderPrivate { unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */ FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */ FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */ FLAC__real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */ unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */ unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */ FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ FLAC__int32 *residual_workspace_mid_side[2][2]; FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; FLAC__Subframe subframe_workspace_mid_side[2][2]; FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2]; unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */ unsigned best_subframe_mid_side[2]; unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ unsigned best_subframe_bits_mid_side[2]; FLAC__uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */ FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */ unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */ FLAC__BitBuffer *frame; /* the current frame being worked on */ double loose_mid_side_stereo_frames_exact; /* exact number of frames the encoder will use before trying both independent and mid/side frames again */ unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */ unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */ FLAC__ChannelAssignment last_channel_assignment; FLAC__StreamMetadata metadata; unsigned current_sample_number; unsigned current_frame_number; struct FLAC__MD5Context md5context; FLAC__CPUInfo cpuinfo; unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); FLAC__bool use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */ FLAC__bool use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */ FLAC__bool use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */ FLAC__bool precompute_partition_sums; /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */ FLAC__bool disable_constant_subframes; FLAC__bool disable_fixed_subframes; FLAC__bool disable_verbatim_subframes; FLAC__StreamEncoderWriteCallback write_callback; FLAC__StreamEncoderMetadataCallback metadata_callback; void *client_data; /* unaligned (original) pointers to allocated data */ FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__int32 *integer_signal_mid_side_unaligned[2]; FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__real *real_signal_mid_side_unaligned[2]; FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2]; FLAC__int32 *residual_workspace_mid_side_unaligned[2][2]; FLAC__uint32 *abs_residual_unaligned; FLAC__uint64 *abs_residual_partition_sums_unaligned; unsigned *raw_bits_per_partition_unaligned; /* * These fields have been moved here from private function local * declarations merely to save stack space during encoding. */ FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */ FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */ /* * The data for the verify section */ struct { FLAC__StreamDecoder *decoder; EncoderStateHint state_hint; FLAC__bool needs_magic_hack; verify_input_fifo input_fifo; verify_output output; struct { FLAC__uint64 absolute_sample; unsigned frame_number; unsigned channel; unsigned sample; FLAC__int32 expected; FLAC__int32 got; } error_stats; } verify; FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */ } FLAC__StreamEncoderPrivate; /*********************************************************************** * * Public static class data * ***********************************************************************/ FLAC_API const char * const FLAC__StreamEncoderStateString[] = { "FLAC__STREAM_ENCODER_OK", "FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR", "FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA", "FLAC__STREAM_ENCODER_INVALID_CALLBACK", "FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS", "FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE", "FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE", "FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE", "FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER", "FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION", "FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH", "FLAC__STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH", "FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE", "FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER", "FLAC__STREAM_ENCODER_NOT_STREAMABLE", "FLAC__STREAM_ENCODER_FRAMING_ERROR", "FLAC__STREAM_ENCODER_INVALID_METADATA", "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING", "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING", "FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR", "FLAC__STREAM_ENCODER_ALREADY_INITIALIZED", "FLAC__STREAM_ENCODER_UNINITIALIZED" }; FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = { "FLAC__STREAM_ENCODER_WRITE_STATUS_OK", "FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR" }; /*********************************************************************** * * Class constructor/destructor * */ FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new() { FLAC__StreamEncoder *encoder; unsigned i; FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ encoder = (FLAC__StreamEncoder*)calloc(1, sizeof(FLAC__StreamEncoder)); if(encoder == 0) { return 0; } encoder->protected_ = (FLAC__StreamEncoderProtected*)calloc(1, sizeof(FLAC__StreamEncoderProtected)); if(encoder->protected_ == 0) { free(encoder); return 0; } encoder->private_ = (FLAC__StreamEncoderPrivate*)calloc(1, sizeof(FLAC__StreamEncoderPrivate)); if(encoder->private_ == 0) { free(encoder->protected_); free(encoder); return 0; } encoder->private_->frame = FLAC__bitbuffer_new(); if(encoder->private_->frame == 0) { free(encoder->private_); free(encoder->protected_); free(encoder); return 0; } set_defaults_(encoder); encoder->private_->is_being_deleted = false; for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0]; encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0]; encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]); encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; return encoder; } FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder) { unsigned i; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->private_->frame); encoder->private_->is_being_deleted = true; FLAC__stream_encoder_finish(encoder); if(0 != encoder->private_->verify.decoder) FLAC__stream_decoder_delete(encoder->private_->verify.decoder); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]); FLAC__bitbuffer_delete(encoder->private_->frame); free(encoder->private_); free(encoder->protected_); free(encoder); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_init(FLAC__StreamEncoder *encoder) { unsigned i; FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment; FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return encoder->protected_->state = FLAC__STREAM_ENCODER_ALREADY_INITIALIZED; encoder->protected_->state = FLAC__STREAM_ENCODER_OK; if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_CALLBACK; if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS; if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2) return encoder->protected_->state = FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH; if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo) return encoder->protected_->state = FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE; if(encoder->protected_->bits_per_sample >= 32) encoder->protected_->do_mid_side_stereo = false; /* since we do 32-bit math, the side channel would have 33 bps and overflow */ if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE; if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate)) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE; if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE; if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER; if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order) return encoder->protected_->state = FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER; if(encoder->protected_->qlp_coeff_precision == 0) { if(encoder->protected_->bits_per_sample < 16) { /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */ /* @@@ until then we'll make a guess */ encoder->protected_->qlp_coeff_precision = max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2); } else if(encoder->protected_->bits_per_sample == 16) { if(encoder->protected_->blocksize <= 192) encoder->protected_->qlp_coeff_precision = 7; else if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = 8; else if(encoder->protected_->blocksize <= 576) encoder->protected_->qlp_coeff_precision = 9; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = 10; else if(encoder->protected_->blocksize <= 2304) encoder->protected_->qlp_coeff_precision = 11; else if(encoder->protected_->blocksize <= 4608) encoder->protected_->qlp_coeff_precision = 12; else encoder->protected_->qlp_coeff_precision = 13; } else { if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1; else encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION); } else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION; if(encoder->protected_->streamable_subset) { if( encoder->protected_->blocksize != 192 && encoder->protected_->blocksize != 576 && encoder->protected_->blocksize != 1152 && encoder->protected_->blocksize != 2304 && encoder->protected_->blocksize != 4608 && encoder->protected_->blocksize != 256 && encoder->protected_->blocksize != 512 && encoder->protected_->blocksize != 1024 && encoder->protected_->blocksize != 2048 && encoder->protected_->blocksize != 4096 && encoder->protected_->blocksize != 8192 && encoder->protected_->blocksize != 16384 ) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; if( encoder->protected_->sample_rate != 8000 && encoder->protected_->sample_rate != 16000 && encoder->protected_->sample_rate != 22050 && encoder->protected_->sample_rate != 24000 && encoder->protected_->sample_rate != 32000 && encoder->protected_->sample_rate != 44100 && encoder->protected_->sample_rate != 48000 && encoder->protected_->sample_rate != 96000 ) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; if( encoder->protected_->bits_per_sample != 8 && encoder->protected_->bits_per_sample != 12 && encoder->protected_->bits_per_sample != 16 && encoder->protected_->bits_per_sample != 20 && encoder->protected_->bits_per_sample != 24 ) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; } if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1; if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order) encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order; /* validate metadata */ if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; metadata_has_seektable = false; metadata_has_vorbis_comment = false; for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_STREAMINFO) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_SEEKTABLE) { if(metadata_has_seektable) /* only one is allowed */ return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; metadata_has_seektable = true; if(!FLAC__format_seektable_is_legal(&encoder->protected_->metadata[i]->data.seek_table)) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; } else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { if(metadata_has_vorbis_comment) /* only one is allowed */ return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; metadata_has_vorbis_comment = true; } else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_CUESHEET) { if(!FLAC__format_cuesheet_is_legal(&encoder->protected_->metadata[i]->data.cue_sheet, encoder->protected_->metadata[i]->data.cue_sheet.is_cd, /*violation=*/0)) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; } } encoder->private_->input_capacity = 0; for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0; encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0; encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0; } for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0; encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0; encoder->private_->best_subframe[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0; encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0; encoder->private_->best_subframe_mid_side[i] = 0; } encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0; encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0; encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0; encoder->private_->loose_mid_side_stereo_frames_exact = (double)encoder->protected_->sample_rate * 0.4 / (double)encoder->protected_->blocksize; encoder->private_->loose_mid_side_stereo_frames = (unsigned)(encoder->private_->loose_mid_side_stereo_frames_exact + 0.5); if(encoder->private_->loose_mid_side_stereo_frames == 0) encoder->private_->loose_mid_side_stereo_frames = 1; encoder->private_->loose_mid_side_stereo_frame_count = 0; encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number = 0; encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(encoder->protected_->blocksize)+1 > 30); encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(max(encoder->protected_->max_lpc_order, FLAC__MAX_FIXED_ORDER))+1 > 30); /*@@@ need to use this? */ encoder->private_->use_wide_by_partition = (false); /*@@@ need to set this */ /* * get the CPU info and set the function pointers */ FLAC__cpu_info(&encoder->private_->cpuinfo); /* first default to the non-asm routines */ encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients; /* now override with asm where appropriate */ #ifndef FLAC__NO_ASM if(encoder->private_->cpuinfo.use_asm) { #ifdef FLAC__CPU_IA32 FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); #ifdef FLAC__HAS_NASM #ifdef FLAC__SSE_OS if(encoder->private_->cpuinfo.data.ia32.sse) { if(encoder->protected_->max_lpc_order < 4) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4; else if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8; else if(encoder->protected_->max_lpc_order < 12) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; } else #endif if(encoder->private_->cpuinfo.data.ia32._3dnow) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov) encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov; if(encoder->private_->cpuinfo.data.ia32.mmx) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx; } else { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; } #endif #endif } #endif /* finally override based on wide-ness if necessary */ if(encoder->private_->use_wide_by_block) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_wide; } /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding; if(!resize_buffers_(encoder, encoder->protected_->blocksize)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } if(!FLAC__bitbuffer_init(encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; /* * Set up the verify stuff if necessary */ if(encoder->protected_->verify) { /* * First, set up the fifo which will hold the * original signal to compare against */ encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize; for(i = 0; i < encoder->protected_->channels; i++) { if(0 == (encoder->private_->verify.input_fifo.data[i] = (FLAC__int32*)malloc(sizeof(FLAC__int32) * encoder->private_->verify.input_fifo.size))) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; } encoder->private_->verify.input_fifo.tail = 0; /* * Now set up a stream decoder for verification */ encoder->private_->verify.decoder = FLAC__stream_decoder_new(); if(0 == encoder->private_->verify.decoder) return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; FLAC__stream_decoder_set_read_callback(encoder->private_->verify.decoder, verify_read_callback_); FLAC__stream_decoder_set_write_callback(encoder->private_->verify.decoder, verify_write_callback_); FLAC__stream_decoder_set_metadata_callback(encoder->private_->verify.decoder, verify_metadata_callback_); FLAC__stream_decoder_set_error_callback(encoder->private_->verify.decoder, verify_error_callback_); FLAC__stream_decoder_set_client_data(encoder->private_->verify.decoder, encoder); if(FLAC__stream_decoder_init(encoder->private_->verify.decoder) != FLAC__STREAM_DECODER_SEARCH_FOR_METADATA) return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; } encoder->private_->verify.error_stats.absolute_sample = 0; encoder->private_->verify.error_stats.frame_number = 0; encoder->private_->verify.error_stats.channel = 0; encoder->private_->verify.error_stats.sample = 0; encoder->private_->verify.error_stats.expected = 0; encoder->private_->verify.error_stats.got = 0; /* * write the stream header */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_MAGIC; if(!FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; if(!write_bitbuffer_(encoder, 0)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } /* * write the STREAMINFO metadata block */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_METADATA; encoder->private_->metadata.type = FLAC__METADATA_TYPE_STREAMINFO; encoder->private_->metadata.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */ encoder->private_->metadata.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH; encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */ encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize; encoder->private_->metadata.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->metadata.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate; encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels; encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample; encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */ memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */ FLAC__MD5Init(&encoder->private_->md5context); if(!FLAC__bitbuffer_clear(encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; if(!FLAC__add_metadata_block(&encoder->private_->metadata, encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; if(!write_bitbuffer_(encoder, 0)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } /* * Now that the STREAMINFO block is written, we can init this to an * absurdly-high value... */ encoder->private_->metadata.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1; /* ... and clear this to 0 */ encoder->private_->metadata.data.stream_info.total_samples = 0; /* * Check to see if the supplied metadata contains a VORBIS_COMMENT; * if not, we will write an empty one (FLAC__add_metadata_block() * automatically supplies the vendor string). * * WATCHOUT: libOggFLAC depends on us to write this block after the * STREAMINFO since that's what the mapping requires. (In the case * that metadata_has_vorbis_comment it true it will have already * insured that the metadata list is properly ordered.) */ if(!metadata_has_vorbis_comment) { FLAC__StreamMetadata vorbis_comment; vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT; vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0); vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */ vorbis_comment.data.vorbis_comment.vendor_string.length = 0; vorbis_comment.data.vorbis_comment.vendor_string.entry = 0; vorbis_comment.data.vorbis_comment.num_comments = 0; vorbis_comment.data.vorbis_comment.comments = 0; if(!FLAC__bitbuffer_clear(encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; if(!write_bitbuffer_(encoder, 0)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } } /* * write the user's metadata blocks */ for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1); if(!FLAC__bitbuffer_clear(encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; if(!write_bitbuffer_(encoder, 0)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } } if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_AUDIO; return encoder->protected_->state; } FLAC_API void FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED) return; if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { if(encoder->private_->current_sample_number != 0) { encoder->protected_->blocksize = encoder->private_->current_sample_number; process_frame_(encoder, true); /* true => is last frame */ } } FLAC__MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context); if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { encoder->private_->metadata_callback(encoder, &encoder->private_->metadata, encoder->private_->client_data); } if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder) FLAC__stream_decoder_finish(encoder->private_->verify.decoder); free_(encoder); set_defaults_(encoder); encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; } FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->verify = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->streamable_subset = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_mid_side_stereo = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->loose_mid_side_stereo = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->channels = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->bits_per_sample = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->sample_rate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->blocksize = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_lpc_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->qlp_coeff_precision = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_qlp_coeff_prec_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if 0 /*@@@ deprecated: */ encoder->protected_->do_escape_coding = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_exhaustive_model_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->min_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if 0 /*@@@ deprecated: */ encoder->protected_->rice_parameter_search_dist = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->total_samples_estimate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, unsigned num_blocks) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->metadata = metadata; encoder->protected_->num_metadata_blocks = num_blocks; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_write_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteCallback value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != value); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->write_callback = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderMetadataCallback value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != value); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->metadata_callback = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_client_data(FLAC__StreamEncoder *encoder, void *value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->client_data = value; return true; } /* * These three functions are not static, but not publically exposed in * include/FLAC/ either. They are used by the test suite. */ FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_constant_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_fixed_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_verbatim_subframes = value; return true; } FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->state; } FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); if(encoder->protected_->verify) return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder); else return FLAC__STREAM_DECODER_UNINITIALIZED; } FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) return FLAC__StreamEncoderStateString[encoder->protected_->state]; else return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder); } FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, FLAC__int32 *expected, FLAC__int32 *got) { FLAC__ASSERT(0 != encoder); if(0 != absolute_sample) *absolute_sample = encoder->private_->verify.error_stats.absolute_sample; if(0 != frame_number) *frame_number = encoder->private_->verify.error_stats.frame_number; if(0 != channel) *channel = encoder->private_->verify.error_stats.channel; if(0 != sample) *sample = encoder->private_->verify.error_stats.sample; if(0 != expected) *expected = encoder->private_->verify.error_stats.expected; if(0 != got) *got = encoder->private_->verify.error_stats.got; } FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->verify; } FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->streamable_subset; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->do_mid_side_stereo; } FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->loose_mid_side_stereo; } FLAC_API unsigned FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->channels; } FLAC_API unsigned FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->bits_per_sample; } FLAC_API unsigned FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->sample_rate; } FLAC_API unsigned FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->blocksize; } FLAC_API unsigned FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->max_lpc_order; } FLAC_API unsigned FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->qlp_coeff_precision; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->do_qlp_coeff_prec_search; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->do_escape_coding; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->do_exhaustive_model_search; } FLAC_API unsigned FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->min_residual_partition_order; } FLAC_API unsigned FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->max_residual_partition_order; } FLAC_API unsigned FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->rice_parameter_search_dist; } FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); return encoder->protected_->total_samples_estimate; } FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], unsigned samples) { unsigned i, j, channel; FLAC__int32 x, mid, side; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); j = 0; if(encoder->protected_->do_mid_side_stereo && channels == 2) { do { if(encoder->protected_->verify) append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { x = mid = side = buffer[0][j]; encoder->private_->integer_signal[0][i] = x; encoder->private_->real_signal[0][i] = (FLAC__real)x; x = buffer[1][j]; encoder->private_->integer_signal[1][i] = x; encoder->private_->real_signal[1][i] = (FLAC__real)x; mid += x; side -= x; mid >>= 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ encoder->private_->integer_signal_mid_side[1][i] = side; encoder->private_->integer_signal_mid_side[0][i] = mid; encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; encoder->private_->current_sample_number++; } if(i == blocksize) { if(!process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } else { do { if(encoder->protected_->verify) append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++) { x = buffer[channel][j]; encoder->private_->integer_signal[channel][i] = x; encoder->private_->real_signal[channel][i] = (FLAC__real)x; } encoder->private_->current_sample_number++; } if(i == blocksize) { if(!process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } return true; } FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], unsigned samples) { unsigned i, j, k, channel; FLAC__int32 x, mid, side; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); j = k = 0; if(encoder->protected_->do_mid_side_stereo && channels == 2) { do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { x = mid = side = buffer[k++]; encoder->private_->integer_signal[0][i] = x; encoder->private_->real_signal[0][i] = (FLAC__real)x; x = buffer[k++]; encoder->private_->integer_signal[1][i] = x; encoder->private_->real_signal[1][i] = (FLAC__real)x; mid += x; side -= x; mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */ encoder->private_->integer_signal_mid_side[1][i] = side; encoder->private_->integer_signal_mid_side[0][i] = mid; encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; encoder->private_->current_sample_number++; } if(i == blocksize) { if(!process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } else { do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++) { x = buffer[k++]; encoder->private_->integer_signal[channel][i] = x; encoder->private_->real_signal[channel][i] = (FLAC__real)x; } encoder->private_->current_sample_number++; } if(i == blocksize) { if(!process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } return true; } /*********************************************************************** * * Private class methods * ***********************************************************************/ void set_defaults_(FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); encoder->protected_->verify = false; encoder->protected_->streamable_subset = true; encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; encoder->protected_->channels = 2; encoder->protected_->bits_per_sample = 16; encoder->protected_->sample_rate = 44100; encoder->protected_->blocksize = 1152; encoder->protected_->max_lpc_order = 0; encoder->protected_->qlp_coeff_precision = 0; encoder->protected_->do_qlp_coeff_prec_search = false; encoder->protected_->do_exhaustive_model_search = false; encoder->protected_->do_escape_coding = false; encoder->protected_->min_residual_partition_order = 0; encoder->protected_->max_residual_partition_order = 0; encoder->protected_->rice_parameter_search_dist = 0; encoder->protected_->total_samples_estimate = 0; encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; encoder->private_->disable_constant_subframes = false; encoder->private_->disable_fixed_subframes = false; encoder->private_->disable_verbatim_subframes = false; encoder->private_->write_callback = 0; encoder->private_->metadata_callback = 0; encoder->private_->client_data = 0; } void free_(FLAC__StreamEncoder *encoder) { unsigned i, channel; FLAC__ASSERT(0 != encoder); for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->integer_signal_unaligned[i]) { free(encoder->private_->integer_signal_unaligned[i]); encoder->private_->integer_signal_unaligned[i] = 0; } if(0 != encoder->private_->real_signal_unaligned[i]) { free(encoder->private_->real_signal_unaligned[i]); encoder->private_->real_signal_unaligned[i] = 0; } } for(i = 0; i < 2; i++) { if(0 != encoder->private_->integer_signal_mid_side_unaligned[i]) { free(encoder->private_->integer_signal_mid_side_unaligned[i]); encoder->private_->integer_signal_mid_side_unaligned[i] = 0; } if(0 != encoder->private_->real_signal_mid_side_unaligned[i]) { free(encoder->private_->real_signal_mid_side_unaligned[i]); encoder->private_->real_signal_mid_side_unaligned[i] = 0; } } for(channel = 0; channel < encoder->protected_->channels; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_unaligned[channel][i]) { free(encoder->private_->residual_workspace_unaligned[channel][i]); encoder->private_->residual_workspace_unaligned[channel][i] = 0; } } } for(channel = 0; channel < 2; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_mid_side_unaligned[channel][i]) { free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]); encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0; } } } if(0 != encoder->private_->abs_residual_unaligned) { free(encoder->private_->abs_residual_unaligned); encoder->private_->abs_residual_unaligned = 0; } if(0 != encoder->private_->abs_residual_partition_sums_unaligned) { free(encoder->private_->abs_residual_partition_sums_unaligned); encoder->private_->abs_residual_partition_sums_unaligned = 0; } if(0 != encoder->private_->raw_bits_per_partition_unaligned) { free(encoder->private_->raw_bits_per_partition_unaligned); encoder->private_->raw_bits_per_partition_unaligned = 0; } if(encoder->protected_->verify) { for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->verify.input_fifo.data[i]) { free(encoder->private_->verify.input_fifo.data[i]); encoder->private_->verify.input_fifo.data[i] = 0; } } } FLAC__bitbuffer_free(encoder->private_->frame); } FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size) { FLAC__bool ok; unsigned i, channel; FLAC__ASSERT(new_size > 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); FLAC__ASSERT(encoder->private_->current_sample_number == 0); /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */ if(new_size <= encoder->private_->input_capacity) return true; ok = true; /* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() * requires that the input arrays (in our case the integer signals) * have a buffer of up to 3 zeroes in front (at negative indices) for * alignment purposes; we use 4 to keep the data well-aligned. */ for(i = 0; ok && i < encoder->protected_->channels; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_unaligned[i], &encoder->private_->real_signal[i]); memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal[i] += 4; } for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_mid_side_unaligned[i], &encoder->private_->real_signal_mid_side[i]); memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal_mid_side[i] += 4; } for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]); } } for(channel = 0; ok && channel < 2; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]); } } ok = ok && FLAC__memory_alloc_aligned_uint32_array(new_size, &encoder->private_->abs_residual_unaligned, &encoder->private_->abs_residual); if(encoder->private_->precompute_partition_sums || encoder->protected_->do_escape_coding) /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_size * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums); if(encoder->protected_->do_escape_coding) ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_size * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition); if(ok) encoder->private_->input_capacity = new_size; else encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return ok; } FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples) { const FLAC__byte *buffer; unsigned bytes; FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); FLAC__bitbuffer_get_buffer(encoder->private_->frame, &buffer, &bytes); if(encoder->protected_->verify) { encoder->private_->verify.output.data = buffer; encoder->private_->verify.output.bytes = bytes; if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) { encoder->private_->verify.needs_magic_hack = true; } else { if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder)) { FLAC__bitbuffer_release_buffer(encoder->private_->frame); if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA) encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return false; } } } if(encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { FLAC__bitbuffer_release_buffer(encoder->private_->frame); encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING; return false; } FLAC__bitbuffer_release_buffer(encoder->private_->frame); if(samples > 0) { encoder->private_->metadata.data.stream_info.min_framesize = min(bytes, encoder->private_->metadata.data.stream_info.min_framesize); encoder->private_->metadata.data.stream_info.max_framesize = max(bytes, encoder->private_->metadata.data.stream_info.max_framesize); } return true; } FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) { FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); /* * Accumulate raw signal to the MD5 signature */ if(!FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Process the frame header and subframes into the frame bitbuffer */ if(!process_subframes_(encoder, is_last_frame)) { /* the above function sets the state for us in case of an error */ return false; } /* * Zero-pad the frame to a byte_boundary */ if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * CRC-16 the whole thing */ FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__bitbuffer_get_write_crc16(encoder->private_->frame), FLAC__FRAME_FOOTER_CRC_LEN); /* * Write it */ if(!write_bitbuffer_(encoder, encoder->protected_->blocksize)) { /* the above function sets the state for us in case of an error */ return false; } /* * Get ready for the next frame */ encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number++; encoder->private_->metadata.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize; return true; } FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) { FLAC__FrameHeader frame_header; unsigned channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order; FLAC__bool do_independent, do_mid_side, precompute_partition_sums; /* * Calculate the min,max Rice partition orders */ if(is_last_frame) { max_partition_order = 0; } else { max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize); max_partition_order = min(max_partition_order, encoder->protected_->max_residual_partition_order); } min_partition_order = min(min_partition_order, max_partition_order); precompute_partition_sums = encoder->private_->precompute_partition_sums && ((max_partition_order > min_partition_order) || encoder->protected_->do_escape_coding); /* * Setup the frame */ if(!FLAC__bitbuffer_clear(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } frame_header.blocksize = encoder->protected_->blocksize; frame_header.sample_rate = encoder->protected_->sample_rate; frame_header.channels = encoder->protected_->channels; frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ frame_header.bits_per_sample = encoder->protected_->bits_per_sample; frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; frame_header.number.frame_number = encoder->private_->current_frame_number; /* * Figure out what channel assignments to try */ if(encoder->protected_->do_mid_side_stereo) { if(encoder->protected_->loose_mid_side_stereo) { if(encoder->private_->loose_mid_side_stereo_frame_count == 0) { do_independent = true; do_mid_side = true; } else { do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT); do_mid_side = !do_independent; } } else { do_independent = true; do_mid_side = true; } } else { do_independent = true; do_mid_side = false; } FLAC__ASSERT(do_independent || do_mid_side); /* * Check for wasted bits; set effective bps for each subframe */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { const unsigned w = get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w; encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w; } } if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { const unsigned w = get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w; encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1); } } /* * First do a normal encoding pass of each independent channel */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { if(! process_subframe_( encoder, min_partition_order, max_partition_order, precompute_partition_sums, &frame_header, encoder->private_->subframe_bps[channel], encoder->private_->integer_signal[channel], encoder->private_->real_signal[channel], encoder->private_->subframe_workspace_ptr[channel], encoder->private_->partitioned_rice_contents_workspace_ptr[channel], encoder->private_->residual_workspace[channel], encoder->private_->best_subframe+channel, encoder->private_->best_subframe_bits+channel ) ) return false; } } /* * Now do mid and side channels if requested */ if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { if(! process_subframe_( encoder, min_partition_order, max_partition_order, precompute_partition_sums, &frame_header, encoder->private_->subframe_bps_mid_side[channel], encoder->private_->integer_signal_mid_side[channel], encoder->private_->real_signal_mid_side[channel], encoder->private_->subframe_workspace_ptr_mid_side[channel], encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[channel], encoder->private_->residual_workspace_mid_side[channel], encoder->private_->best_subframe_mid_side+channel, encoder->private_->best_subframe_bits_mid_side+channel ) ) return false; } } /* * Compose the frame bitbuffer */ if(do_mid_side) { unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__ChannelAssignment channel_assignment; FLAC__ASSERT(encoder->protected_->channels == 2); if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) { channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE); } else { unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ unsigned min_bits; FLAC__ChannelAssignment ca; FLAC__ASSERT(do_independent && do_mid_side); /* We have to figure out which channel assignent results in the smallest frame */ bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1]; bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1]; for(channel_assignment = (FLAC__ChannelAssignment)0, min_bits = bits[0], ca = (FLAC__ChannelAssignment)1; (int)ca <= 3; ca = (FLAC__ChannelAssignment)((int)ca + 1)) { if(bits[ca] < min_bits) { min_bits = bits[ca]; channel_assignment = ca; } } } frame_header.channel_assignment = channel_assignment; if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; default: FLAC__ASSERT(0); } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[1]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; default: FLAC__ASSERT(0); } /* note that encoder_add_subframe_ sets the state for us in case of an error */ if(!add_subframe_(encoder, &frame_header, left_bps , left_subframe , encoder->private_->frame)) return false; if(!add_subframe_(encoder, &frame_header, right_bps, right_subframe, encoder->private_->frame)) return false; } else { if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } for(channel = 0; channel < encoder->protected_->channels; channel++) { if(!add_subframe_(encoder, &frame_header, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) { /* the above function sets the state for us in case of an error */ return false; } } } if(encoder->protected_->loose_mid_side_stereo) { encoder->private_->loose_mid_side_stereo_frame_count++; if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames) encoder->private_->loose_mid_side_stereo_frame_count = 0; } encoder->private_->last_channel_assignment = frame_header.channel_assignment; return true; } FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], const FLAC__real real_signal[], FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits ) { FLAC__real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; FLAC__real lpc_residual_bits_per_sample; FLAC__real autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm routines need all the space */ FLAC__real lpc_error[FLAC__MAX_LPC_ORDER]; unsigned min_lpc_order, max_lpc_order, lpc_order; unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; unsigned rice_parameter; unsigned _candidate_bits, _best_bits; unsigned _best_subframe; /* verbatim subframe is the baseline against which we measure other compressed subframes */ _best_subframe = 0; if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) _best_bits = UINT_MAX; else _best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) { unsigned signal_is_constant = false; guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); /* check for constant subframe */ if(!encoder->private_->disable_constant_subframes && fixed_residual_bits_per_sample[1] == 0.0) { /* the above means integer_signal+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */ unsigned i; signal_is_constant = true; for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) { if(integer_signal[0] != integer_signal[i]) { signal_is_constant = false; break; } } } if(signal_is_constant) { _candidate_bits = evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } else { if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) { /* encode fixed */ if(encoder->protected_->do_exhaustive_model_search) { min_fixed_order = 0; max_fixed_order = FLAC__MAX_FIXED_ORDER; } else { min_fixed_order = max_fixed_order = guess_fixed_order; } for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { if(fixed_residual_bits_per_sample[fixed_order] >= (FLAC__real)subframe_bps) continue; /* don't even try */ rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */ #ifndef FLAC__SYMMETRIC_RICE rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } _candidate_bits = evaluate_fixed_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual, encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, frame_header->blocksize, subframe_bps, fixed_order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } /* encode lpc */ if(encoder->protected_->max_lpc_order > 0) { if(encoder->protected_->max_lpc_order >= frame_header->blocksize) max_lpc_order = frame_header->blocksize-1; else max_lpc_order = encoder->protected_->max_lpc_order; if(max_lpc_order > 0) { encoder->private_->local_lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc); /* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */ if(autoc[0] != 0.0) { FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, encoder->private_->lp_coeff, lpc_error); if(encoder->protected_->do_exhaustive_model_search) { min_lpc_order = 1; } else { unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps); min_lpc_order = max_lpc_order = guess_lpc_order; } for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) { lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order); if(lpc_residual_bits_per_sample >= (FLAC__real)subframe_bps) continue; /* don't even try */ rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */ #ifndef FLAC__SYMMETRIC_RICE rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } if(encoder->protected_->do_qlp_coeff_prec_search) { min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; /* ensure a 32-bit datapath throughout for 16bps or less */ if(subframe_bps <= 16) max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, FLAC__MAX_QLP_COEFF_PRECISION); else max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } else { min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision; } for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { _candidate_bits = evaluate_lpc_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual, encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, encoder->private_->lp_coeff[lpc_order-1], frame_header->blocksize, subframe_bps, lpc_order, qlp_coeff_precision, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } } } } } } } /* under rare circumstances this can happen when all but lpc subframe types are disabled: */ if(_best_bits == UINT_MAX) { FLAC__ASSERT(_best_subframe == 0); _best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); } *best_subframe = _best_subframe; *best_bits = _best_bits; return true; } FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame ) { switch(subframe->type) { case FLAC__SUBFRAME_TYPE_CONSTANT: if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_FIXED: if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_LPC: if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_VERBATIM: if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; default: FLAC__ASSERT(0); } return true; } unsigned evaluate_constant_subframe_( const FLAC__int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe ) { subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; subframe->data.constant.value = signal; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps; } unsigned evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { unsigned i, residual_bits; const unsigned residual_samples = blocksize - order; FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); subframe->type = FLAC__SUBFRAME_TYPE_FIXED; subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.fixed.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, do_escape_coding, rice_parameter_search_dist, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice ); subframe->data.fixed.order = order; for(i = 0; i < order; i++) subframe->data.fixed.warmup[i] = signal[i]; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits; } unsigned evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; unsigned i, residual_bits; int quantization, ret; const unsigned residual_samples = blocksize - order; /* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams */ if(subframe_bps <= 16) { FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER); qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order)); } ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization); if(ret != 0) return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ if(subframe_bps + qlp_coeff_precision + FLAC__bitmath_ilog2(order) <= 32) if(subframe_bps <= 16 && qlp_coeff_precision <= 16) encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); subframe->type = FLAC__SUBFRAME_TYPE_LPC; subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.lpc.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, do_escape_coding, rice_parameter_search_dist, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice ); subframe->data.lpc.order = order; subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; subframe->data.lpc.quantization_level = quantization; memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER); for(i = 0; i < order; i++) subframe->data.lpc.warmup[i] = signal[i]; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits; } unsigned evaluate_verbatim_subframe_( const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ) { subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; subframe->data.verbatim.data = signal; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps); } unsigned find_best_partition_order_( FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice ) { FLAC__int32 r; unsigned residual_bits, best_residual_bits = 0; unsigned residual_sample; unsigned best_parameters_index = 0; const unsigned blocksize = residual_samples + predictor_order; /* compute abs(residual) for use later */ for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) { r = residual[residual_sample]; abs_residual[residual_sample] = (FLAC__uint32)(r<0? -r : r); } max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order); min_partition_order = min(min_partition_order, max_partition_order); if(precompute_partition_sums) { int partition_order; unsigned sum; precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order); if(do_escape_coding) precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order); for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) { #ifdef DONT_ESTIMATE_RICE_BITS if(! set_partitioned_rice_with_precompute_( residual, abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, (unsigned)partition_order, do_escape_coding, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) #else if(! set_partitioned_rice_with_precompute_( abs_residual, abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, (unsigned)partition_order, do_escape_coding, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) #endif { FLAC__ASSERT(best_residual_bits != 0); break; } sum += 1u << partition_order; if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; best_parameters_index = !best_parameters_index; best_partitioned_rice->order = partition_order; } } } else { unsigned partition_order; for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) { #ifdef DONT_ESTIMATE_RICE_BITS if(! set_partitioned_rice_( abs_residual, residual, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, partition_order, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) #else if(! set_partitioned_rice_( abs_residual, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, partition_order, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) #endif { FLAC__ASSERT(best_residual_bits != 0); break; } if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; best_parameters_index = !best_parameters_index; best_partitioned_rice->order = partition_order; } } } /* * We are allowed to de-const the pointer based on our special knowledge; * it is const to the outside world. */ { FLAC__EntropyCodingMethod_PartitionedRiceContents* best_partitioned_rice_contents = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_partitioned_rice->contents; FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(best_partitioned_rice_contents, max(6, best_partitioned_rice->order)); memcpy(best_partitioned_rice_contents->parameters, private_->partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partitioned_rice->order))); memcpy(best_partitioned_rice_contents->raw_bits, private_->partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partitioned_rice->order))); } return best_residual_bits; } void precompute_partition_info_sums_( const FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ) { int partition_order; unsigned from_partition, to_partition = 0; const unsigned blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__uint64 abs_residual_partition_sum; FLAC__uint32 abs_r; unsigned partition, partition_sample, partition_samples, residual_sample; const unsigned partitions = 1u << partition_order; const unsigned default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; abs_residual_partition_sum = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { abs_r = abs_residual[residual_sample]; abs_residual_partition_sum += abs_r; residual_sample++; } abs_residual_partition_sums[partition] = abs_residual_partition_sum; } to_partition = partitions; break; } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { FLAC__uint64 s; unsigned i; const unsigned partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { s = abs_residual_partition_sums[from_partition]; from_partition++; abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition]; from_partition++; to_partition++; } } } void precompute_partition_info_escapes_( const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ) { int partition_order; unsigned from_partition, to_partition = 0; const unsigned blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__int32 r, residual_partition_min, residual_partition_max; unsigned silog2_min, silog2_max; unsigned partition, partition_sample, partition_samples, residual_sample; const unsigned partitions = 1u << partition_order; const unsigned default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; residual_partition_min = residual_partition_max = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { r = residual[residual_sample]; if(r < residual_partition_min) residual_partition_min = r; else if(r > residual_partition_max) residual_partition_max = r; residual_sample++; } silog2_min = FLAC__bitmath_silog2(residual_partition_min); silog2_max = FLAC__bitmath_silog2(residual_partition_max); raw_bits_per_partition[partition] = max(silog2_min, silog2_max); } to_partition = partitions; break; } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { unsigned m; unsigned i; const unsigned partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { m = raw_bits_per_partition[from_partition]; from_partition++; raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]); from_partition++; to_partition++; } } } #ifdef VARIABLE_RICE_BITS #undef VARIABLE_RICE_BITS #endif #ifndef DONT_ESTIMATE_RICE_BITS #define VARIABLE_RICE_BITS(value, parameter) ((value) >> (parameter)) #endif #ifdef DONT_ESTIMATE_RICE_BITS FLAC__bool set_partitioned_rice_( const FLAC__uint32 abs_residual[], const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ) #else FLAC__bool set_partitioned_rice_( const FLAC__uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ) #endif { unsigned rice_parameter, partition_bits; #ifndef NO_RICE_SEARCH unsigned best_partition_bits; unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; #endif unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; unsigned *parameters; FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order)); parameters = partitioned_rice_contents->parameters; if(partition_order == 0) { unsigned i; #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(suggested_rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = suggested_rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * residual_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * residual_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; for(i = 0; i < residual_samples; i++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif parameters[0] = best_rice_parameter; bits_ += best_partition_bits; } else { unsigned partition, residual_sample, save_residual_sample, partition_sample; unsigned partition_samples; FLAC__uint64 mean, k; const unsigned partitions = 1u << partition_order; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = 0; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) mean += abs_residual[residual_sample]; residual_sample = save_residual_sample; #ifdef FLAC__SYMMETRIC_RICE mean += partition_samples >> 1; /* for rounding effect */ mean /= partition_samples; /* calc rice_parameter = floor(log2(mean)) */ rice_parameter = 0; mean>>=1; while(mean) { rice_parameter++; mean >>= 1; } #else /* calc rice_parameter ala LOCO-I */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * partition_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * partition_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(rice_parameter != max_rice_parameter) residual_sample = save_residual_sample; if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif parameters[partition] = best_rice_parameter; bits_ += best_partition_bits; } } *bits = bits_; return true; } #ifdef DONT_ESTIMATE_RICE_BITS FLAC__bool set_partitioned_rice_with_precompute_( const FLAC__int32 residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ) #else FLAC__bool set_partitioned_rice_with_precompute_( const FLAC__uint32 abs_residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ) #endif { unsigned rice_parameter, partition_bits; #ifndef NO_RICE_SEARCH unsigned best_partition_bits; unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; #endif unsigned flat_bits; unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; unsigned *parameters, *raw_bits; FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order)); parameters = partitioned_rice_contents->parameters; raw_bits = partitioned_rice_contents->raw_bits; if(partition_order == 0) { unsigned i; #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(suggested_rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = suggested_rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * residual_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * residual_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; for(i = 0; i < residual_samples; i++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif if(search_for_escapes) { flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples; if(flat_bits <= best_partition_bits) { raw_bits[0] = raw_bits_per_partition[0]; best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; best_partition_bits = flat_bits; } } parameters[0] = best_rice_parameter; bits_ += best_partition_bits; } else { unsigned partition, residual_sample, save_residual_sample, partition_sample; unsigned partition_samples; FLAC__uint64 mean, k; const unsigned partitions = 1u << partition_order; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = abs_residual_partition_sums[partition]; #ifdef FLAC__SYMMETRIC_RICE mean += partition_samples >> 1; /* for rounding effect */ mean /= partition_samples; /* calc rice_parameter = floor(log2(mean)) */ rice_parameter = 0; mean>>=1; while(mean) { rice_parameter++; mean >>= 1; } #else /* calc rice_parameter ala LOCO-I */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * partition_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * partition_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(rice_parameter != max_rice_parameter) residual_sample = save_residual_sample; if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif if(search_for_escapes) { flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples; if(flat_bits <= best_partition_bits) { raw_bits[partition] = raw_bits_per_partition[partition]; best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; best_partition_bits = flat_bits; } } parameters[partition] = best_rice_parameter; bits_ += best_partition_bits; } } *bits = bits_; return true; } unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples) { unsigned i, shift; FLAC__int32 x = 0; for(i = 0; i < samples && !(x&1); i++) x |= signal[i]; if(x == 0) { shift = 0; } else { for(shift = 0; !(x&1); shift++) x >>= 1; } if(shift > 0) { for(i = 0; i < samples; i++) signal[i] >>= shift; } return shift; } void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples) { unsigned channel; for(channel = 0; channel < channels; channel++) memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples); fifo->tail += wide_samples; FLAC__ASSERT(fifo->tail <= fifo->size); } void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples) { unsigned channel; unsigned sample, wide_sample; unsigned tail = fifo->tail; sample = input_offset * channels; for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) { for(channel = 0; channel < channels; channel++) fifo->data[channel][tail] = input[sample++]; tail++; } fifo->tail = tail; FLAC__ASSERT(fifo->tail <= fifo->size); } FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], unsigned *bytes, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; const unsigned encoded_bytes = encoder->private_->verify.output.bytes; (void)decoder; if(encoder->private_->verify.needs_magic_hack) { FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH); *bytes = FLAC__STREAM_SYNC_LENGTH; memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes); encoder->private_->verify.needs_magic_hack = false; } else { if(encoded_bytes == 0) { /* * If we get here, a FIFO underflow has occurred, * which means there is a bug somewhere. */ FLAC__ASSERT(0); return FLAC__STREAM_DECODER_READ_STATUS_ABORT; } else if(encoded_bytes < *bytes) *bytes = encoded_bytes; memcpy(buffer, encoder->private_->verify.output.data, *bytes); encoder->private_->verify.output.data += *bytes; encoder->private_->verify.output.bytes -= *bytes; } return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; } FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data; unsigned channel; const unsigned channels = FLAC__stream_decoder_get_channels(decoder); const unsigned blocksize = frame->header.blocksize; const unsigned bytes_per_block = sizeof(FLAC__int32) * blocksize; for(channel = 0; channel < channels; channel++) { if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) { unsigned i, sample = 0; FLAC__int32 expect = 0, got = 0; for(i = 0; i < blocksize; i++) { if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) { sample = i; expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i]; got = (FLAC__int32)buffer[channel][i]; break; } } FLAC__ASSERT(i < blocksize); FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample; encoder->private_->verify.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize); encoder->private_->verify.error_stats.channel = channel; encoder->private_->verify.error_stats.sample = sample; encoder->private_->verify.error_stats.expected = expect; encoder->private_->verify.error_stats.got = got; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } } /* dequeue the frame from the fifo */ for(channel = 0; channel < channels; channel++) { memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail - blocksize); } encoder->private_->verify.input_fifo.tail -= blocksize; return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data) { (void)decoder, (void)metadata, (void)client_data; } void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; (void)decoder, (void)status; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; }