/* SHA512 module */ /* This module provides an interface to NIST's SHA-512 and SHA-384 Algorithms */ /* See below for information about the original code this module was based upon. Additional work performed by: Andrew Kuchling (amk@amk.ca) Greg Stein (gstein@lyra.org) Trevor Perrin (trevp@trevp.net) Copyright (C) 2005 Gregory P. Smith (greg@electricrain.com) Licensed to PSF under a Contributor Agreement. */ /* SHA objects */ #include "Python.h" #include "structmember.h" #ifdef PY_LONG_LONG /* If no PY_LONG_LONG, don't compile anything! */ /* Endianness testing and definitions */ #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\ if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;} #define PCT_LITTLE_ENDIAN 1 #define PCT_BIG_ENDIAN 0 /* Some useful types */ typedef unsigned char SHA_BYTE; #if SIZEOF_INT == 4 typedef unsigned int SHA_INT32; /* 32-bit integer */ typedef unsigned PY_LONG_LONG SHA_INT64; /* 64-bit integer */ #else /* not defined. compilation will die. */ #endif /* The SHA block size and message digest sizes, in bytes */ #define SHA_BLOCKSIZE 128 #define SHA_DIGESTSIZE 64 /* The structure for storing SHA info */ typedef struct { PyObject_HEAD SHA_INT64 digest[8]; /* Message digest */ SHA_INT32 count_lo, count_hi; /* 64-bit bit count */ SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ int Endianness; int local; /* unprocessed amount in data */ int digestsize; } SHAobject; /* When run on a little-endian CPU we need to perform byte reversal on an array of longwords. */ static void longReverse(SHA_INT64 *buffer, int byteCount, int Endianness) { SHA_INT64 value; if ( Endianness == PCT_BIG_ENDIAN ) return; byteCount /= sizeof(*buffer); while (byteCount--) { value = *buffer; ((unsigned char*)buffer)[0] = (unsigned char)(value >> 56) & 0xff; ((unsigned char*)buffer)[1] = (unsigned char)(value >> 48) & 0xff; ((unsigned char*)buffer)[2] = (unsigned char)(value >> 40) & 0xff; ((unsigned char*)buffer)[3] = (unsigned char)(value >> 32) & 0xff; ((unsigned char*)buffer)[4] = (unsigned char)(value >> 24) & 0xff; ((unsigned char*)buffer)[5] = (unsigned char)(value >> 16) & 0xff; ((unsigned char*)buffer)[6] = (unsigned char)(value >> 8) & 0xff; ((unsigned char*)buffer)[7] = (unsigned char)(value ) & 0xff; buffer++; } } static void SHAcopy(SHAobject *src, SHAobject *dest) { dest->Endianness = src->Endianness; dest->local = src->local; dest->digestsize = src->digestsize; dest->count_lo = src->count_lo; dest->count_hi = src->count_hi; memcpy(dest->digest, src->digest, sizeof(src->digest)); memcpy(dest->data, src->data, sizeof(src->data)); } /* ------------------------------------------------------------------------ * * This code for the SHA-512 algorithm was noted as public domain. The * original headers are pasted below. * * Several changes have been made to make it more compatible with the * Python environment and desired interface. * */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * gurantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org */ /* SHA512 by Tom St Denis */ /* Various logical functions */ #define ROR64(x, y) \ ( ((((x) & Py_ULL(0xFFFFFFFFFFFFFFFF))>>((unsigned PY_LONG_LONG)(y) & 63)) | \ ((x)<<((unsigned PY_LONG_LONG)(64-((y) & 63))))) & Py_ULL(0xFFFFFFFFFFFFFFFF)) #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) ROR64((x),(n)) #define R(x, n) (((x) & Py_ULL(0xFFFFFFFFFFFFFFFF)) >> ((unsigned PY_LONG_LONG)n)) #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39)) #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41)) #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7)) #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6)) static void sha512_transform(SHAobject *sha_info) { int i; SHA_INT64 S[8], W[80], t0, t1; memcpy(W, sha_info->data, sizeof(sha_info->data)); longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness); for (i = 16; i < 80; ++i) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } for (i = 0; i < 8; ++i) { S[i] = sha_info->digest[i]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i,ki) \ t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,Py_ULL(0x428a2f98d728ae22)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,Py_ULL(0x7137449123ef65cd)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,Py_ULL(0xb5c0fbcfec4d3b2f)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,Py_ULL(0xe9b5dba58189dbbc)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,Py_ULL(0x3956c25bf348b538)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,Py_ULL(0x59f111f1b605d019)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,Py_ULL(0x923f82a4af194f9b)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,Py_ULL(0xab1c5ed5da6d8118)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,Py_ULL(0xd807aa98a3030242)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,Py_ULL(0x12835b0145706fbe)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,Py_ULL(0x243185be4ee4b28c)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,Py_ULL(0x550c7dc3d5ffb4e2)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,Py_ULL(0x72be5d74f27b896f)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,Py_ULL(0x80deb1fe3b1696b1)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,Py_ULL(0x9bdc06a725c71235)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,Py_ULL(0xc19bf174cf692694)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,Py_ULL(0xe49b69c19ef14ad2)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,Py_ULL(0xefbe4786384f25e3)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,Py_ULL(0x0fc19dc68b8cd5b5)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,Py_ULL(0x240ca1cc77ac9c65)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,Py_ULL(0x2de92c6f592b0275)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,Py_ULL(0x4a7484aa6ea6e483)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,Py_ULL(0x5cb0a9dcbd41fbd4)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,Py_ULL(0x76f988da831153b5)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,Py_ULL(0x983e5152ee66dfab)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,Py_ULL(0xa831c66d2db43210)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,Py_ULL(0xb00327c898fb213f)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,Py_ULL(0xbf597fc7beef0ee4)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,Py_ULL(0xc6e00bf33da88fc2)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,Py_ULL(0xd5a79147930aa725)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,Py_ULL(0x06ca6351e003826f)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,Py_ULL(0x142929670a0e6e70)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,Py_ULL(0x27b70a8546d22ffc)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,Py_ULL(0x2e1b21385c26c926)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,Py_ULL(0x4d2c6dfc5ac42aed)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,Py_ULL(0x53380d139d95b3df)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,Py_ULL(0x650a73548baf63de)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,Py_ULL(0x766a0abb3c77b2a8)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,Py_ULL(0x81c2c92e47edaee6)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,Py_ULL(0x92722c851482353b)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,Py_ULL(0xa2bfe8a14cf10364)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,Py_ULL(0xa81a664bbc423001)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,Py_ULL(0xc24b8b70d0f89791)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,Py_ULL(0xc76c51a30654be30)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,Py_ULL(0xd192e819d6ef5218)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,Py_ULL(0xd69906245565a910)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,Py_ULL(0xf40e35855771202a)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,Py_ULL(0x106aa07032bbd1b8)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,Py_ULL(0x19a4c116b8d2d0c8)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,Py_ULL(0x1e376c085141ab53)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,Py_ULL(0x2748774cdf8eeb99)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,Py_ULL(0x34b0bcb5e19b48a8)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,Py_ULL(0x391c0cb3c5c95a63)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,Py_ULL(0x4ed8aa4ae3418acb)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,Py_ULL(0x5b9cca4f7763e373)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,Py_ULL(0x682e6ff3d6b2b8a3)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,Py_ULL(0x748f82ee5defb2fc)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,Py_ULL(0x78a5636f43172f60)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,Py_ULL(0x84c87814a1f0ab72)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,Py_ULL(0x8cc702081a6439ec)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,Py_ULL(0x90befffa23631e28)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,Py_ULL(0xa4506cebde82bde9)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,Py_ULL(0xbef9a3f7b2c67915)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,Py_ULL(0xc67178f2e372532b)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],64,Py_ULL(0xca273eceea26619c)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],65,Py_ULL(0xd186b8c721c0c207)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],66,Py_ULL(0xeada7dd6cde0eb1e)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],67,Py_ULL(0xf57d4f7fee6ed178)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],68,Py_ULL(0x06f067aa72176fba)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],69,Py_ULL(0x0a637dc5a2c898a6)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],70,Py_ULL(0x113f9804bef90dae)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],71,Py_ULL(0x1b710b35131c471b)); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],72,Py_ULL(0x28db77f523047d84)); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],73,Py_ULL(0x32caab7b40c72493)); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],74,Py_ULL(0x3c9ebe0a15c9bebc)); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],75,Py_ULL(0x431d67c49c100d4c)); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],76,Py_ULL(0x4cc5d4becb3e42b6)); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],77,Py_ULL(0x597f299cfc657e2a)); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],78,Py_ULL(0x5fcb6fab3ad6faec)); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],79,Py_ULL(0x6c44198c4a475817)); #undef RND /* feedback */ for (i = 0; i < 8; i++) { sha_info->digest[i] = sha_info->digest[i] + S[i]; } } /* initialize the SHA digest */ static void sha512_init(SHAobject *sha_info) { TestEndianness(sha_info->Endianness) sha_info->digest[0] = Py_ULL(0x6a09e667f3bcc908); sha_info->digest[1] = Py_ULL(0xbb67ae8584caa73b); sha_info->digest[2] = Py_ULL(0x3c6ef372fe94f82b); sha_info->digest[3] = Py_ULL(0xa54ff53a5f1d36f1); sha_info->digest[4] = Py_ULL(0x510e527fade682d1); sha_info->digest[5] = Py_ULL(0x9b05688c2b3e6c1f); sha_info->digest[6] = Py_ULL(0x1f83d9abfb41bd6b); sha_info->digest[7] = Py_ULL(0x5be0cd19137e2179); sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; sha_info->digestsize = 64; } static void sha384_init(SHAobject *sha_info) { TestEndianness(sha_info->Endianness) sha_info->digest[0] = Py_ULL(0xcbbb9d5dc1059ed8); sha_info->digest[1] = Py_ULL(0x629a292a367cd507); sha_info->digest[2] = Py_ULL(0x9159015a3070dd17); sha_info->digest[3] = Py_ULL(0x152fecd8f70e5939); sha_info->digest[4] = Py_ULL(0x67332667ffc00b31); sha_info->digest[5] = Py_ULL(0x8eb44a8768581511); sha_info->digest[6] = Py_ULL(0xdb0c2e0d64f98fa7); sha_info->digest[7] = Py_ULL(0x47b5481dbefa4fa4); sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; sha_info->digestsize = 48; } /* update the SHA digest */ static void sha512_update(SHAobject *sha_info, SHA_BYTE *buffer, int count) { int i; SHA_INT32 clo; clo = sha_info->count_lo + ((SHA_INT32) count << 3); if (clo < sha_info->count_lo) { ++sha_info->count_hi; } sha_info->count_lo = clo; sha_info->count_hi += (SHA_INT32) count >> 29; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha512_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha512_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = count; } /* finish computing the SHA digest */ static void sha512_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info) { int count; SHA_INT32 lo_bit_count, hi_bit_count; lo_bit_count = sha_info->count_lo; hi_bit_count = sha_info->count_hi; count = (int) ((lo_bit_count >> 3) & 0x7f); ((SHA_BYTE *) sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 16) { memset(((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha512_transform(sha_info); memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 16); } else { memset(((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - 16 - count); } /* GJS: note that we add the hi/lo in big-endian. sha512_transform will swap these values into host-order. */ sha_info->data[112] = 0; sha_info->data[113] = 0; sha_info->data[114] = 0; sha_info->data[115] = 0; sha_info->data[116] = 0; sha_info->data[117] = 0; sha_info->data[118] = 0; sha_info->data[119] = 0; sha_info->data[120] = (hi_bit_count >> 24) & 0xff; sha_info->data[121] = (hi_bit_count >> 16) & 0xff; sha_info->data[122] = (hi_bit_count >> 8) & 0xff; sha_info->data[123] = (hi_bit_count >> 0) & 0xff; sha_info->data[124] = (lo_bit_count >> 24) & 0xff; sha_info->data[125] = (lo_bit_count >> 16) & 0xff; sha_info->data[126] = (lo_bit_count >> 8) & 0xff; sha_info->data[127] = (lo_bit_count >> 0) & 0xff; sha512_transform(sha_info); digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 56) & 0xff); digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 48) & 0xff); digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 40) & 0xff); digest[ 3] = (unsigned char) ((sha_info->digest[0] >> 32) & 0xff); digest[ 4] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha_info->digest[0] ) & 0xff); digest[ 8] = (unsigned char) ((sha_info->digest[1] >> 56) & 0xff); digest[ 9] = (unsigned char) ((sha_info->digest[1] >> 48) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[1] >> 40) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[1] >> 32) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[1] ) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[2] >> 56) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[2] >> 48) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[2] >> 40) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[2] >> 32) & 0xff); digest[20] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[21] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[22] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[23] = (unsigned char) ((sha_info->digest[2] ) & 0xff); digest[24] = (unsigned char) ((sha_info->digest[3] >> 56) & 0xff); digest[25] = (unsigned char) ((sha_info->digest[3] >> 48) & 0xff); digest[26] = (unsigned char) ((sha_info->digest[3] >> 40) & 0xff); digest[27] = (unsigned char) ((sha_info->digest[3] >> 32) & 0xff); digest[28] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[29] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[30] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[31] = (unsigned char) ((sha_info->digest[3] ) & 0xff); digest[32] = (unsigned char) ((sha_info->digest[4] >> 56) & 0xff); digest[33] = (unsigned char) ((sha_info->digest[4] >> 48) & 0xff); digest[34] = (unsigned char) ((sha_info->digest[4] >> 40) & 0xff); digest[35] = (unsigned char) ((sha_info->digest[4] >> 32) & 0xff); digest[36] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[37] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[38] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[39] = (unsigned char) ((sha_info->digest[4] ) & 0xff); digest[40] = (unsigned char) ((sha_info->digest[5] >> 56) & 0xff); digest[41] = (unsigned char) ((sha_info->digest[5] >> 48) & 0xff); digest[42] = (unsigned char) ((sha_info->digest[5] >> 40) & 0xff); digest[43] = (unsigned char) ((sha_info->digest[5] >> 32) & 0xff); digest[44] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff); digest[45] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff); digest[46] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff); digest[47] = (unsigned char) ((sha_info->digest[5] ) & 0xff); digest[48] = (unsigned char) ((sha_info->digest[6] >> 56) & 0xff); digest[49] = (unsigned char) ((sha_info->digest[6] >> 48) & 0xff); digest[50] = (unsigned char) ((sha_info->digest[6] >> 40) & 0xff); digest[51] = (unsigned char) ((sha_info->digest[6] >> 32) & 0xff); digest[52] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff); digest[53] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff); digest[54] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff); digest[55] = (unsigned char) ((sha_info->digest[6] ) & 0xff); digest[56] = (unsigned char) ((sha_info->digest[7] >> 56) & 0xff); digest[57] = (unsigned char) ((sha_info->digest[7] >> 48) & 0xff); digest[58] = (unsigned char) ((sha_info->digest[7] >> 40) & 0xff); digest[59] = (unsigned char) ((sha_info->digest[7] >> 32) & 0xff); digest[60] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff); digest[61] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff); digest[62] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff); digest[63] = (unsigned char) ((sha_info->digest[7] ) & 0xff); } /* * End of copied SHA code. * * ------------------------------------------------------------------------ */ static PyTypeObject SHA384type; static PyTypeObject SHA512type; static SHAobject * newSHA384object(void) { return (SHAobject *)PyObject_New(SHAobject, &SHA384type); } static SHAobject * newSHA512object(void) { return (SHAobject *)PyObject_New(SHAobject, &SHA512type); } /* Internal methods for a hash object */ static void SHA512_dealloc(PyObject *ptr) { PyObject_Del(ptr); } /* External methods for a hash object */ PyDoc_STRVAR(SHA512_copy__doc__, "Return a copy of the hash object."); static PyObject * SHA512_copy(SHAobject *self, PyObject *unused) { SHAobject *newobj; if (((PyObject*)self)->ob_type == &SHA512type) { if ( (newobj = newSHA512object())==NULL) return NULL; } else { if ( (newobj = newSHA384object())==NULL) return NULL; } SHAcopy(self, newobj); return (PyObject *)newobj; } PyDoc_STRVAR(SHA512_digest__doc__, "Return the digest value as a string of binary data."); static PyObject * SHA512_digest(SHAobject *self, PyObject *unused) { unsigned char digest[SHA_DIGESTSIZE]; SHAobject temp; SHAcopy(self, &temp); sha512_final(digest, &temp); return PyString_FromStringAndSize((const char *)digest, self->digestsize); } PyDoc_STRVAR(SHA512_hexdigest__doc__, "Return the digest value as a string of hexadecimal digits."); static PyObject * SHA512_hexdigest(SHAobject *self, PyObject *unused) { unsigned char digest[SHA_DIGESTSIZE]; SHAobject temp; PyObject *retval; char *hex_digest; int i, j; /* Get the raw (binary) digest value */ SHAcopy(self, &temp); sha512_final(digest, &temp); /* Create a new string */ retval = PyString_FromStringAndSize(NULL, self->digestsize * 2); if (!retval) return NULL; hex_digest = PyString_AsString(retval); if (!hex_digest) { Py_DECREF(retval); return NULL; } /* Make hex version of the digest */ for (i=j=0; idigestsize; i++) { char c; c = (digest[i] >> 4) & 0xf; c = (c>9) ? c+'a'-10 : c + '0'; hex_digest[j++] = c; c = (digest[i] & 0xf); c = (c>9) ? c+'a'-10 : c + '0'; hex_digest[j++] = c; } return retval; } PyDoc_STRVAR(SHA512_update__doc__, "Update this hash object's state with the provided string."); static PyObject * SHA512_update(SHAobject *self, PyObject *args) { unsigned char *cp; int len; if (!PyArg_ParseTuple(args, "s#:update", &cp, &len)) return NULL; sha512_update(self, cp, len); Py_INCREF(Py_None); return Py_None; } static PyMethodDef SHA_methods[] = { {"copy", (PyCFunction)SHA512_copy, METH_NOARGS, SHA512_copy__doc__}, {"digest", (PyCFunction)SHA512_digest, METH_NOARGS, SHA512_digest__doc__}, {"hexdigest", (PyCFunction)SHA512_hexdigest, METH_NOARGS, SHA512_hexdigest__doc__}, {"update", (PyCFunction)SHA512_update, METH_VARARGS, SHA512_update__doc__}, {NULL, NULL} /* sentinel */ }; static PyObject * SHA512_get_block_size(PyObject *self, void *closure) { return PyInt_FromLong(SHA_BLOCKSIZE); } static PyObject * SHA512_get_name(PyObject *self, void *closure) { if (((SHAobject *)self)->digestsize == 64) return PyString_FromStringAndSize("SHA512", 6); else return PyString_FromStringAndSize("SHA384", 6); } static PyGetSetDef SHA_getseters[] = { {"block_size", (getter)SHA512_get_block_size, NULL, NULL, NULL}, {"name", (getter)SHA512_get_name, NULL, NULL, NULL}, {NULL} /* Sentinel */ }; static PyMemberDef SHA_members[] = { {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL}, /* the old md5 and sha modules support 'digest_size' as in PEP 247. * the old sha module also supported 'digestsize'. ugh. */ {"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL}, {NULL} /* Sentinel */ }; static PyTypeObject SHA384type = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "_sha512.sha384", /*tp_name*/ sizeof(SHAobject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ SHA512_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ SHA_methods, /* tp_methods */ SHA_members, /* tp_members */ SHA_getseters, /* tp_getset */ }; static PyTypeObject SHA512type = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "_sha512.sha512", /*tp_name*/ sizeof(SHAobject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ SHA512_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ SHA_methods, /* tp_methods */ SHA_members, /* tp_members */ SHA_getseters, /* tp_getset */ }; /* The single module-level function: new() */ PyDoc_STRVAR(SHA512_new__doc__, "Return a new SHA-512 hash object; optionally initialized with a string."); static PyObject * SHA512_new(PyObject *self, PyObject *args, PyObject *kwdict) { static char *kwlist[] = {"string", NULL}; SHAobject *new; unsigned char *cp = NULL; int len; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, &cp, &len)) { return NULL; } if ((new = newSHA512object()) == NULL) return NULL; sha512_init(new); if (PyErr_Occurred()) { Py_DECREF(new); return NULL; } if (cp) sha512_update(new, cp, len); return (PyObject *)new; } PyDoc_STRVAR(SHA384_new__doc__, "Return a new SHA-384 hash object; optionally initialized with a string."); static PyObject * SHA384_new(PyObject *self, PyObject *args, PyObject *kwdict) { static char *kwlist[] = {"string", NULL}; SHAobject *new; unsigned char *cp = NULL; int len; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, &cp, &len)) { return NULL; } if ((new = newSHA384object()) == NULL) return NULL; sha384_init(new); if (PyErr_Occurred()) { Py_DECREF(new); return NULL; } if (cp) sha512_update(new, cp, len); return (PyObject *)new; } /* List of functions exported by this module */ static struct PyMethodDef SHA_functions[] = { {"sha512", (PyCFunction)SHA512_new, METH_VARARGS|METH_KEYWORDS, SHA512_new__doc__}, {"sha384", (PyCFunction)SHA384_new, METH_VARARGS|METH_KEYWORDS, SHA384_new__doc__}, {NULL, NULL} /* Sentinel */ }; /* Initialize this module. */ #define insint(n,v) { PyModule_AddIntConstant(m,n,v); } PyMODINIT_FUNC init_sha512(void) { PyObject *m; SHA384type.ob_type = &PyType_Type; if (PyType_Ready(&SHA384type) < 0) return; SHA512type.ob_type = &PyType_Type; if (PyType_Ready(&SHA512type) < 0) return; m = Py_InitModule("_sha512", SHA_functions); if (m == NULL) return; } #endif